
Stateflow®

Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Reference
© COPYRIGHT 2006–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2006 Online only New for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release R2006b)
September 2007 Online only Rereleased for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Rereleased for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Rereleased for Version 7.5 (Release 2010a)
September 2010 Online only Rereleased for Version 7.6 (Release 2010b)
April 2011 Online only Rereleased for Version 7.7 (Release 2011a)
September 2011 Online only Rereleased for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)
September 2017 Online only Revised for Version 9.0 (Release 2017b)
March 2018 Online only Revised for Version 9.1 (Release 2018a)
September 2018 Online only Revised for Version 9.2 (Release 2018b)
March 2019 Online only Revised for Version 10.0 (Release 2019a)
September 2019 Online only Revised for Version 10.1 (Release 2019b)
March 2020 Online only Revised for Version 10.2 (Release 2020a)
September 2020 Online only Revised for Version 10.3 (Release 2020b)
March 2021 Online only Revised for Version 10.4 (Release 2021a)
September 2021 Online only Revised for Version 10.5 (Release 2021b)
March 2022 Online only Revised for Version 10.6 (Release 2022a)
September 2022 Online only Revised for Version 10.7 (Release 2022b)
March 2023 Online only Revised for Version 10.8 (Release 2023a)

Blocks
1

Functions
2

Operators
3

Objects
4

Object Functions
5

Tools
6

v

Contents

Blocks

1

Chart
Implement control logic with finite state machine

Libraries:
Stateflow

Description
The Chart block is a graphical representation of a finite state machine based on a state transition
diagram. In a Stateflow chart, states and transitions form the basic building blocks of a sequential
logic system. States correspond to operating modes and transitions represent pathways between
states. For more information, see “Model Finite State Machines by Using Stateflow Charts”.

To implement control logic, Stateflow charts can use MATLAB® or C as the action language. For more
information, see “Differences Between MATLAB and C as Action Language Syntax”.

Chart properties specify how your Stateflow chart interfaces with the Simulink® model. You can
modify chart properties in the Property Inspector, the Model Explorer, or the Chart properties
dialog box. For more information, see “Specify Properties for Stateflow Charts”. Alternatively, you can
modify chart properties programmatically by using Stateflow.Chart objects. For more information
about the Stateflow programmatic interface, see “Overview of the Stateflow API”.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

When you create input data in the Symbols pane, Stateflow creates input ports. The input data that
you create has a corresponding input port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | string

Output

Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols pane, Stateflow creates output ports. The output data
that you create has a corresponding output port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | string

1 Blocks

1-2

Parameters
Parameters on the Code Generation tab require Simulink Coder™ or Embedded Coder®.

Main

Show port labels — Select how to display port labels
FromPortIcon (default) | none | FromPortBlockName | SignalName

Select how to display port labels on the Chart block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the Chart block.
Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the Chart block.
Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: string scalar or character vector
Value: "none""FromPortIcon" | "FromPortBlockName" | "SignalName"
Default: "FromPortIcon"

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block library, you can
create and open links to the chart and can make and modify local copies of the chart but you
cannot change the permissions or modify the contents of the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can create links to
the chart in a model but you cannot open, modify, change permissions, or create local copies of
the chart.

Programmatic Use
Parameter: Permissions
Type: string scalar or character vector
Value: "ReadWrite" | "ReadOnly" | "NoReadOrWrite"
Default: "ReadWrite"

 Chart

1-3

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: string scalar or character vector
Value: "off" | "on"
Default: "off"

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as inherited
(-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this rate as the
value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf), Simulink
displays an error message when you update or simulate the model. For example, suppose all the
blocks in the chart must run 5 times a second. To ensure this time, specify the sample time of the
chart as 0.2. In this example, if any of the blocks in the chart specify a sample time other than
0.2, -1, or inf, Simulink displays an error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use this sample
time.

[Ts 0]
Specify periodic sample time.

Programmatic Use
Parameter: SystemSampleTime
Type: string scalar or character vector
Value: "-1" | "[Ts 0]"
Default: "-1"

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and number of
instances of the chart that exist in the model.

1 Blocks

1-4

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts with this setting
generate functions that might have arguments depending on the “Function interface” (Simulink)
parameter setting. You can name the generated function and file using parameters “Function
name” (Simulink) and “File name (no extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code when a
model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused in the
generated code of a model reference hierarchy that includes multiple instances of a chart across
referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function, you can
designate each one of them as Auto or as Reusable function. It is best to use one because
using both creates two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible. Selecting Auto does not allow for control of the
function or file name for the chart code.

• The Reusable function and Auto options both determine whether multiple instances of a chart
exist and the code can be reused. The options behave differently when it is impossible to reuse the
code. In this case, Auto yields inlined code, or if circumstances prohibit inlining, separate
functions for each chart instance.

• If you select the Reusable function while your generated code is under source control, set
File name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change whenever you modify your model, which prevents
source control on your files.

Dependency

• This parameter requires Simulink Coder.
• Setting this parameter to Nonreusable function or Reusable function enables the

following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and an ERT-based

system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-based system

target file)
• Setting this parameter to Nonreusable function enables Function with separate data

(requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: string scalar or character vector
Value: "Auto" | "Inline" | "Nonreusable function" | "Reusable function"

 Chart

1-5

Default: "Auto"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has one default HDL architecture.

Active State Output

To generate an output port in the HDL code that shows the active state, in the Properties window of
the chart, select Create output for monitoring. The output is an enumerated data type. See
“Simplify Stateflow Charts by Incorporating Active State Output”.

Registered Output

To insert an output register that delays the chart output by a simulation cycle, use the OutputPipeline
(HDL Coder) block property.

HDL Block Properties

ClockDrivenOutput Enable clock-driven outputs to prevent combinatorial logic from driving the
output and to allow an immediate output update when the clock signal and
state change. The default is off. When you set ClockDrivenOutput to on,
HDL Coder adds an output register that updates when the state updates.
The final output variable is then assigned a value from the clock-drive
register. This option is available only for Moore charts.

ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

1 Blocks

1-6

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

InstantiateFunctions Generate a VHDL® entity or Verilog® module for each function. The
default is off. See also “InstantiateFunctions” (HDL Coder).

LoopOptimization Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization” (HDL Coder).

MapPersistentVarsTo
RAM

Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

VariablesToPipeline Warning VariablesToPipeline is not recommended. Use
coder.hdl.pipeline instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a character vector, with spaces
separating the variables.

Complex Data Support

This block supports code generation for complex signals.
Restrictions

To learn about restrictions of using charts, see “Introduction to Stateflow HDL Code Generation”
(HDL Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
State Transition Table | Truth Table

Objects
Stateflow.Chart

Topics
“Construct and Run a Stateflow Chart”

 Chart

1-7

“Model Finite State Machines by Using Stateflow Charts”
“Specify Properties for Stateflow Charts”
“Differences Between MATLAB and C as Action Language Syntax”

1 Blocks

1-8

Sequence Viewer
Display messages, events, states, transitions, and functions between blocks during simulation

Libraries:
Simulink / Messages & Events
Simulink Test
SimEvents
Stateflow

Description
The Sequence Viewer block displays messages, events, states, transitions, and functions between
certain blocks during simulation. The blocks that you can display are called lifeline blocks and
include:

• Subsystems
• Referenced models
• Blocks that contain messages, such as Stateflow charts
• Blocks that call functions or generate events, such as Function Caller, Function-Call Generator,

and MATLAB Function blocks
• Blocks that contain functions, such as Function-Call Subsystem and Simulink Function blocks

To see states, transitions, and events for lifeline blocks in a referenced model, you must have a
Sequence Viewer block in the referenced model. Without a Sequence Viewer block in the referenced
model, you can see only messages and functions for lifeline blocks in the referenced model.

Note The Sequence Viewer block does not display function calls generated by MATLAB Function
blocks and S-functions.

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: VariableStepTimePrecision
Type: string scalar or character vector
Values: "3" | scalar

 Sequence Viewer

1-9

Default: "3"

History — Maximum number of previous events to display
5000 (default) | scalar

Total number of events before the last event to display.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.
Programmatic Use
Block Parameter: History
Type: string scalar or character vector
Values: "1000" | scalar
Default: "1000"

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for visualizing message transitions during simulation, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block displays messages during simulation when used in subsystems that generate HDL code,
but it is not included in the hardware implementation.

1 Blocks

1-10

See Also
Tools
Sequence Viewer

Topics
“Use the Sequence Viewer to Visualize Messages, Events, and Entities”

 Sequence Viewer

1-11

State Transition Table
Represent modal logic in tabular format

Libraries:
Stateflow

Description
The State Transition Table block represents a finite state machine for sequential modal logic in
tabular format. Instead of drawing states and transitions in a Stateflow chart, you can use a state
transition table to model a state machine in a concise, compact format that requires minimal
maintenance of graphical objects. For more information, see “Use State Transition Tables to Express
Sequential Logic in Tabular Form”.

To implement control logic, State Transition Table blocks can use MATLAB or C as the action
language. For more information, see “Differences Between MATLAB and C as Action Language
Syntax”.

State Transition Table block properties specify how your state transition table interfaces with the
Simulink model. You can modify these properties in the Property Inspector, the Model Explorer, or
the State Transition Table properties dialog box. For more information, see “Specify Properties for
State Transition Tables”. Alternatively, you can specify state transition table properties
programmatically by using Stateflow.StateTransitionTableChart objects. For more
information about the Stateflow programmatic interface, see “Overview of the Stateflow API”.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

When you create input data in the Symbols pane, Stateflow creates input ports. The input data that
you create has a corresponding input port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | string

Output

Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols pane, Stateflow creates output ports. The output data
that you create has a corresponding output port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | string

1 Blocks

1-12

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main

Show port labels — Select how to display port labels
FromPortIcon (default) | none | FromPortBlockName | SignalName

Select how to display port labels on the State Transition Table block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the State
Transition Table block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the State Transition Table block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the State
Transition Table block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: string scalar or character vector
Value: "none""FromPortIcon" | "FromPortBlockName" | "SignalName"
Default: "FromPortIcon"

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block library, you can
create and open links to the chart and can make and modify local copies of the chart but you
cannot change the permissions or modify the contents of the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can create links to
the chart in a model but you cannot open, modify, change permissions, or create local copies of
the chart.

Programmatic Use
Parameter: Permissions
Type: string scalar or character vector
Value: "ReadWrite" | "ReadOnly" | "NoReadOrWrite"
Default: "ReadWrite"

 State Transition Table

1-13

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: string scalar or character vector
Value: "off" | "on"
Default: "off"

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as inherited
(-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this rate as the
value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf), Simulink
displays an error message when you update or simulate the model. For example, suppose all the
blocks in the chart must run 5 times a second. To ensure this time, specify the sample time of the
chart as 0.2. In this example, if any of the blocks in the chart specify a sample time other than
0.2, -1, or inf, Simulink displays an error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use this sample
time.

[Ts 0]
Specify periodic sample time.

Programmatic Use
Parameter: SystemSampleTime
Type: string scalar or character vector
Value: "-1" | "[Ts 0]"
Default: "-1"

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and number of
instances of the chart that exist in the model.

1 Blocks

1-14

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. State transition tables
with this setting generate functions that might have arguments depending on the “Function
interface” (Simulink) parameter setting. You can name the generated function and file using
parameters “Function name” (Simulink) and “File name (no extension)” (Simulink). These
functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code when a
model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused in the
generated code of a model reference hierarchy that includes multiple instances of a chart across
referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function, you can
designate each one of them as Auto or as Reusable function. It is best to use one because
using both creates two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible. Selecting Auto does not allow for control of the
function or file name for the chart code.

• The Reusable function and Auto options both determine whether multiple instances of a chart
exist and the code can be reused. The options behave differently when it is impossible to reuse the
code. In this case, Auto yields inlined code, or if circumstances prohibit inlining, separate
functions for each chart instance.

• If you select the Reusable function while your generated code is under source control, set
File name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change whenever you modify your model, which prevents
source control on your files.

Dependency

• This parameter requires Simulink Coder.
• Setting this parameter to Nonreusable function or Reusable function enables the

following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and an ERT-based

system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-based system

target file)
• Setting this parameter to Nonreusable function enables Function with separate data

(requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: string scalar or character vector

 State Transition Table

1-15

Value: "Auto" | "Inline" | "Nonreusable function" | "Reusable function"
Default: "Auto"

Version History
Introduced in R2012b

R2022b: New keyboard shortcut
Behavior changed in R2022b

The keyboard shortcut to append a transition column to a state transition table is now Ctrl+K. In
previous releases, the shortcut was Ctrl+M.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Tunable Parameters

You can use a tunable parameter in a State Transition Table intended for HDL code generation. For
details, see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

Active State Output

To generate an output port in the HDL code that shows the active state, in the Properties window of
the chart, select Create output for monitoring. The output is an enumerated data type. See
“Simplify Stateflow Charts by Incorporating Active State Output”.

HDL Block Properties

ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

1 Blocks

1-16

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

InstantiateFunctions Generate a VHDL entity or Verilog module for each function. The default
is off. See also “InstantiateFunctions” (HDL Coder).

LoopOptimization Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization” (HDL Coder).

MapPersistentVarsTo
RAM

Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

VariablesToPipeline Warning VariablesToPipeline is not recommended. Use
coder.hdl.pipeline instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a character vector, with spaces
separating the variables.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Chart | Truth Table

Objects
Stateflow.StateTransitionTableChart

Topics
“Use State Transition Tables to Express Sequential Logic in Tabular Form”
“Inspect the Design of State Transition Tables”
“Specify Properties for Stateflow Charts”

 State Transition Table

1-17

Truth Table
Represent logical decision-making behavior with conditions, decisions, and actions

Libraries:
Stateflow

Description
The Truth Table block implements combinatorial logic design in a tabular format. You can use truth
table blocks to model decision making for fault detection and management and mode switching. For
more information, see “Use Truth Tables to Model Combinatorial Logic”.

To implement control logic, Truth Table blocks use MATLAB as the action language.

Truth Table block properties specify how your truth table interfaces with the Simulink model. You can
modify these properties in the Property Inspector, the Model Explorer, or the Truth Table properties
dialog box. For more information, see “Specify Properties for Truth Table Blocks”. Alternatively, you
can modify Truth Table block properties programmatically by using Stateflow.TruthTableChart
objects. For more information about the Stateflow programmatic interface, see “Overview of the
Stateflow API”.

Ports
Input

u — Input port
scalar | vector | matrix

When you create input data in the Symbols pane, Stateflow creates input ports. The input data that
you create has a corresponding input port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | string

Output

y — Output port
scalar | vector | matrix

When you create output data in the Symbols pane, Stateflow creates output ports. The output data
that you create has a corresponding output port that appears once you create data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus | string

1 Blocks

1-18

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main

Show port labels — Select how to display port labels
FromPortIcon (default) | none | FromPortBlockName | SignalName

Select how to display port labels on the Truth Table block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the Truth Table
block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Truth Table block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the Truth Table
block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: string scalar or character vector
Value: "none""FromPortIcon" | "FromPortBlockName" | "SignalName"
Default: "FromPortIcon"

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block library, you can
create and open links to the chart and can make and modify local copies of the chart but you
cannot change the permissions or modify the contents of the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can create links to
the chart in a model but you cannot open, modify, change permissions, or create local copies of
the chart.

Programmatic Use
Parameter: Permissions
Type: string scalar or character vector
Value: "ReadWrite" | "ReadOnly" | "NoReadOrWrite"
Default: "ReadWrite"

 Truth Table

1-19

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: string scalar or character vector
Value: "off" | "on"
Default: "off"

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as inherited
(-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this rate as the
value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf), Simulink
displays an error message when you update or simulate the model. For example, suppose all the
blocks in the chart must run 5 times a second. To ensure this time, specify the sample time of the
chart as 0.2. In this example, if any of the blocks in the chart specify a sample time other than
0.2, -1, or inf, Simulink displays an error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use this sample
time.

[Ts 0]
Specify periodic sample time.

Programmatic Use
Parameter: SystemSampleTime
Type: string scalar or character vector
Value: "-1" | "[Ts 0]"
Default: "-1"

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and number of
instances of the chart that exist in the model.

1 Blocks

1-20

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Truth table blocks with
this setting generate functions that might have arguments depending on the “Function interface”
(Simulink) parameter setting. You can name the generated function and file using parameters
“Function name” (Simulink) and “File name (no extension)” (Simulink). These functions are not
reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code when a
model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused in the
generated code of a model reference hierarchy that includes multiple instances of a chart across
referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function, you can
designate each one of them as Auto or as Reusable function. It is best to use one because
using both creates two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible. Selecting Auto does not allow for control of the
function or file name for the chart code.

• The Reusable function and Auto options both determine whether multiple instances of a chart
exist and the code can be reused. The options behave differently when it is impossible to reuse the
code. In this case, Auto yields inlined code, or if circumstances prohibit inlining, separate
functions for each chart instance.

• If you select the Reusable function while your generated code is under source control, set
File name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change whenever you modify your model, which prevents
source control on your files.

Dependency

• This parameter requires Simulink Coder.
• Setting this parameter to Nonreusable function or Reusable function enables the

following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and an ERT-based

system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-based system

target file)
• Setting this parameter to Nonreusable function enables Function with separate data

(requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: string scalar or character vector

 Truth Table

1-21

Value: "Auto" | "Inline" | "Nonreusable function" | "Reusable function"
Default: "Auto"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Tunable Parameters

You can use a tunable parameter in a Truth Table block intended for HDL code generation. For
details, see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

InstantiateFunctions Generate a VHDL entity or Verilog module for each function. The default
is off. See also “InstantiateFunctions” (HDL Coder).

LoopOptimization Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization” (HDL Coder).

MapPersistentVarsTo
RAM

Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM” (HDL Coder).

1 Blocks

1-22

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

VariablesToPipeline Warning VariablesToPipeline is not recommended. Use
coder.hdl.pipeline instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a character vector, with spaces
separating the variables.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Chart | State Transition Table

Objects
Stateflow.TruthTableChart

Topics
“Use Truth Tables to Model Combinatorial Logic”
“Program a Truth Table”
“Specify Properties for Stateflow Charts”

 Truth Table

1-23

Functions

2

sfclipboard
Clipboard object

Syntax
clipboard = sfclipboard

Description
clipboard = sfclipboard returns the Stateflow.Clipboard object. Use the Clipboard
object to copy and paste objects within the same chart, between charts in the same Simulink model,
or between charts in different models.

Examples

Copy and Paste by Grouping

Group a state and copy its contents to the chart. When you group a state, box, or graphical function,
you can copy and paste all the objects contained in the grouped object, as well as all the relationships
among these objects. This method is the simplest way of copying and pasting objects
programmatically. If a state is not grouped, copying the state does not copy any of its contents.

Open the model and access the Stateflow.Chart object for the chart.

open_system("sfHierarchyAPIExample")
ch = find(sfroot,"-isa","Stateflow.Chart");

Find the Stateflow.State object named A.

sA = find(ch,"-isa","Stateflow.State",Name="A");

2 Functions

2-2

Group state A and its contents by setting the IsGrouped property for sA to true. Save the previous
setting of this property so you can revert to it later.

prevGrouping = sA.IsGrouped;
sA.IsGrouped = true;

Change the name of the state to Copy_of_A. Save the previous name so you can revert to it later.

prevName = sA.Name;
newName = "Copy_of_"+prevName;
sA.Name = newName;

Access the clipboard object.

cb = sfclipboard;

Copy the grouped state to the clipboard.

copy(cb,sA);

Restore the state properties to their original settings.

sA.IsGrouped = prevGrouping;
sA.Name = prevName;

Paste a copy of the objects from the clipboard to the chart.

pasteTo(cb,ch);

Adjust the state properties of the new state.

sNew = find(ch,"-isa","Stateflow.State",Name=newName);
sNew.Position = sA.Position + [400 0 0 0];
sNew.IsGrouped = prevGrouping;

 sfclipboard

2-3

Copy and Paste Array of Objects

Copy states A1 and A2, along with the transition between them, to a new state in the chart. To
preserve transition connections and containment relationships between objects, copy all the
connected objects at once.

Open the model and access the Stateflow.Chart object for the chart.

open_system("sfHierarchyAPIExample")
ch = find(sfroot,"-isa","Stateflow.Chart");

Find the Stateflow.State object named A.

sA = find(ch,"-isa","Stateflow.State",Name="A");

Add a new state called B. To enable pasting of other objects inside B, convert the new state to a
subchart.

sB = Stateflow.State(ch);
sB.Name = "B";
sB.Position = sA.Position + [400 0 0 0];
sB.IsSubchart = true;

Create an array called objArray that contains the states and transitions in state A. Use the function
setdiff to remove state A from the array of objects to copy.

objArrayS = find(sA,"-isa","Stateflow.State");
objArrayS = setdiff(objArrayS,sA);
objArrayT = find(sA,"-isa","Stateflow.Transition");
objArray = [objArrayS objArrayT];

Access the clipboard object.

cb = sfclipboard;

Copy the objects in objArray and paste them in subchart B.

copy(cb,objArray);
pasteTo(cb,sB);

2 Functions

2-4

Revert B to a state.

sB.IsSubchart = false;
sB.IsGrouped = false;

Reposition the states and transitions in B.

newStates = find(sB,"-isa","Stateflow.State");
newStates = setdiff(newStates,sB);

newTransitions = find(sB,"-isa","Stateflow.Transition");
newOClocks = get(newTransitions,{"SourceOClock","DestinationOClock"});

for i = 1:numel(newStates)
 newStates(i).Position = newStates(i).Position + [25 35 0 0];
end
set(newTransitions,{"SourceOClock","DestinationOClock"},newOClocks);

Version History
Introduced before R2006a

See Also
Functions
copy | find | pasteTo | setdiff

Objects
Stateflow.Clipboard | Stateflow.State

Topics
“Overview of the Stateflow API”

 sfclipboard

2-5

sfclose
Close Stateflow chart

Syntax
sfclose
sfclose all
sfclose chartName
sfclose(___)

Description
sfclose closes the chart that was opened or modified most recently. Closing a chart in a Simulink
model also closes the model.

sfclose all closes all open charts.

sfclose chartName closes all open charts called chartName.

sfclose(___) enables you to specify the input arguments in the previous syntaxes by using
variables or strings. For example, you can enter sfclose(var) where var is a variable set to "My
Chart" or "all".

Examples

Close Current Chart

Close the Stateflow chart that was opened or modified most recently.

sfclose

Close All Open Charts

Close all open Stateflow charts.

sfclose all

Close Specified Chart

Close all open Stateflow charts called MyChart.

sfclose MyChart

2 Functions

2-6

Specify Chart Name Using a Variable

Close the open Stateflow chart specified by the variable chart.

chart = "My Chart";
sfclose(chart)

Input Arguments
chartName — Name of chart
string scalar | character vector

Name of Stateflow chart to close, specified as a string scalar or character vector. If the name of the
chart includes spaces, enclose the chart name in quotes. To specify the name of the chart using a
variable or a string, call sfclose with its input argument enclosed in parentheses.
Example: sfclose MyChart
Example: sfclose("My Chart")
Data Types: char | string

Version History
Introduced in R2006a

See Also
sfnew | sfopen | sflib | sfsave

 sfclose

2-7

sfdebugger
Open Breakpoints and Watch window

Syntax
sfdebugger

Description
sfdebugger opens the Stateflow Breakpoints and Watch window. In this window, you can manage
the breakpoints in a chart and view the current data and message values while the simulation is
paused at a breakpoint.

• To see a list of all of the breakpoints and their associated conditions, select the Breakpoints tab.
For more information, see “Manage Breakpoints Through the Breakpoints and Watch Window”.

• To inspect data and message values, select the Watch tab. For more information, see “View Data
in the Breakpoints and Watch Window”.

Version History
Introduced in R2006a

See Also
sfnew | sfopen | sflib | sfexplr

Topics
“Set Breakpoints to Debug Charts”
“Inspect and Modify Data and Messages While Debugging”

2 Functions

2-8

sfexplr
Open Model Explorer

Syntax
sfexplr

Description
sfexplr opens the Model Explorer. If the Model Explorer is already open, but not visible, then
sfexplr brings it to the foreground. A Simulink model does not need to be open.

Version History
Introduced in R2006a

See Also
Tools
Model Explorer

Functions
sfnew | sfopen | sflib | sfdebugger

Topics
“Use the Model Explorer with Stateflow Objects”

 sfexplr

2-9

sfgco
Selected objects in chart

Syntax
objects = sfgco

Description
objects = sfgco returns a handle or vector of handles to the most recently selected Stateflow
objects. If more than one chart is open, the function searches the last chart with which you interacted
that is still open.

Examples

Zoom in on Selected State

In the Stateflow Editor, select a state by clicking on it.

Access the Stateflow.State object.

myState = sfgco;

Zoom in on the selected state.

fitToView(myState)

Display Names of Selected States

In the Stateflow Editor, simultaneously select several states by clicking each state while pressing the
Shift key.

Access the Stateflow.State objects.

myStates = sfgco;

Display the names of the selected states.

get(mystates,"Name")

Output Arguments
objects — Selected graphical objects
handle | vector of handles

Selected graphical objects, returned as a handle or vector of handles to Stateflow API objects. This
table describes the format and content of the output of the function, depending on your selection.

2 Functions

2-10

Value Description
Empty matrix You have not opened or edited any charts.
Handle to the chart most recently clicked You clicked in a chart, but did not select any

objects.
Handle to the selected object You selected one object in a chart.
Vector of handles to the selected objects You selected multiple objects in a chart.
Vector of handles to the most recently selected
objects in the most recently selected chart

You selected multiple objects in multiple charts.

Version History
Introduced before R2006a

See Also
Functions
find | fitToView

Objects
Stateflow.State

Topics
“Overview of the Stateflow API”
“Access Objects in Your Stateflow Chart”
“Create Charts by Using the Stateflow API”

 sfgco

2-11

sfhelp
Open Stateflow documentation in Help browser

Syntax
sfhelp

Description
sfhelp opens the Stateflow documentation in the MATLAB Help browser.

Version History
Introduced before R2006a

See Also
doc | docsearch | help | lookfor

2 Functions

2-12

sflib
Open Stateflow block library

Syntax
sflib

Description
sflib opens the Stateflow block library. From this library, you can drag Stateflow charts, State
Transition Table blocks, Truth Table blocks, and Sequence Viewer blocks into Simulink models.

Version History
Introduced in R2006a

See Also
Blocks
Chart | State Transition Table | Truth Table | Sequence Viewer

Functions
sfnew | sfopen | sfdebugger | sfexplr

 sflib

2-13

sfnew
Create Simulink model that contains an empty Stateflow block

Syntax
sfnew
sfnew chartType
sfnew modelName
sfnew chartType modelName
sfnew(___)

Description
sfnew creates an untitled Simulink model that contains an empty Stateflow chart.

sfnew chartType creates an untitled model that contains an empty block of type chartType.

sfnew modelName creates a model called modelName that contains an empty chart.

sfnew chartType modelName creates a model called modelName that contains an empty block of
type chartType.

sfnew(___) enables you to specify the input arguments in the previous syntaxes by using variables
or strings. For example, you can enter sfnew(var1,var2) where var1 is a variable set to "-C" and
var2 is a variable set to "MyModel".

Examples

Create Untitled Model with Chart

Create an untitled model that contains an empty Stateflow chart that uses the default action language
for new charts.

sfnew

For more information, see “Modify the Action Language for a Chart”.

Create Untitled Model with Truth Table

Create an untitled model called MyModel that contains an empty Truth Table block.

sfnew -TT

Create Named Model with Chart

Create a model called MyModel that contains an empty Stateflow chart that uses MATLAB as the
action language.

2 Functions

2-14

sfnew MyModel

Create Named Model with Moore Chart

Create a model called MyModel that contains an empty Stateflow chart that uses Moore semantics.

sfnew -Moore MyModel

Specify Chart Type Using a Variable

Create an untitled model that contains an empty Stateflow chart of the type specified by the variable
type.

type = "-C";
sfnew(type)

Input Arguments
chartType — Type of block
-MATLAB (default) | -M | -C | -Mealy | -Moore | -STT | -TT

Type of Stateflow block to add to empty model, specified as one of these options:

• -MATLAB or -M — Chart that uses MATLAB as the action language
• -C — Chart that uses C as the action language
• -Mealy — Chart that supports Mealy machine semantics
• -Moore — Chart that supports Moore machine semantics
• -STT — State Transition Table
• -TT — Truth Table

To specify the type of the block using a variable or a string, call sfnew with its input arguments
enclosed in parentheses.
Example: sfnew -MATLAB
Example: sfnew("-MATLAB")

modelName — Name of model
string scalar | character vector

Name of the Simulink model, specified as a string scalar or character vector. To specify the name of
the model using a variable or a string, call sfnew with its input arguments enclosed in parentheses.
Example: sfnew MyModel
Example: sfnew("MyModel")
Data Types: char | string

 sfnew

2-15

Tips
• The default action language for new charts is MATLAB. To change the default action language, use

the sfpref function. For example, to change the default action language to C, enter:

sfpref(ActionLanguage="C")

For more information, see “Modify the Action Language for a Chart”.
• To create a standalone chart that you can execute as a MATLAB object, use the edit function. For

example, in the MATLAB Command Window, enter:

edit chart.sfx

For more information, see “Create Stateflow Charts for Execution as MATLAB Objects”.

Version History
Introduced before R2006a

See Also
Blocks
Chart | State Transition Table | Truth Table

Functions
sfopen | sfclose | sflib | sfpref

Topics
“Differences Between MATLAB and C as Action Language Syntax”
“Overview of Mealy and Moore Machines”
“Use Truth Tables to Model Combinatorial Logic”
“Use State Transition Tables to Express Sequential Logic in Tabular Form”

2 Functions

2-16

sfopen
Open Simulink model

Syntax
sfopen

Description
sfopen prompts you to select a Simulink model file and opens the model.

Tips
To open a standalone chart in MATLAB, use the edit function. For example, in the MATLAB
Command Window, enter:

edit chart.sfx

For more information, see “Create Stateflow Charts for Execution as MATLAB Objects”.

Version History
Introduced in R2006a

See Also
sfnew | sflib | sfclose

 sfopen

2-17

sfpref
Set preferences for Stateflow charts

Syntax
allSettings = sfpref

setting = sfpref(preference)

setting = sfpref(ActionLanguage=actionLanguage)
setting = sfpref(PatternWizardCustomDir=customPatternFolder)
setting = sfpref(EnableLabelAutoCorrectionForMAL=autoCorrection)
setting = sfpref(ShowTransitionLabelOwner=transitionLabelLines)

Description
allSettings = sfpref returns the Stateflow preferences and settings.

setting = sfpref(preference) returns the setting for the specified preference.

setting = sfpref(ActionLanguage=actionLanguage) sets the default action language used
by new Stateflow charts and state transition tables. For more information, see “Change the Default
Action Language”.

setting = sfpref(PatternWizardCustomDir=customPatternFolder) sets the custom
pattern folder used by the Pattern Wizard. For more information, see “Save Custom Flow Chart
Patterns”.

setting = sfpref(EnableLabelAutoCorrectionForMAL=autoCorrection) enables or
disables automatic correction of common C constructs in Stateflow charts that use MATLAB as the
action language. For more information, see “Auto Correction When Using MATLAB as the Action
Language”.

setting = sfpref(ShowTransitionLabelOwner=transitionLabelLines) enables or
disables indicator lines between transitions and associated labels.

Examples

Display Settings for All Preferences

Display the settings for all Stateflow preferences.

sfpref

ans =

 struct with fields:

 ActionLanguage: 'MATLAB'
 EnableLabelAutoCorrectionForMAL: 1

2 Functions

2-18

 PatternWizardCustomDir: ''
 ShowTransitionLabelOwner: 0

Display Default Action Language

Display the default action language used by new Stateflow charts and state transition tables.

sfpref("ActionLanguage")

ans =

 'MATLAB'

Change Default Action Language

Change the default action language used by new Stateflow charts and state transition tables to C.

sfpref(ActionLanguage="C")

ans =

 'C'

Set Custom Pattern Folder

Set the custom pattern folder used by the Pattern Wizard to C:\patterns.

sfpref(PatternWizardCustomDir=fullfile("C:","patterns"))

ans =

 'C:\patterns'

Disable Automatic Correction of C Constructs

Disable automatic correction of common C constructs in charts that use MATLAB as the action
language.

sfpref(EnableLabelAutoCorrectionForMAL=false)

ans =

 0

Display Indicator Lines Between Transitions and Labels

Display an indicator line between every transition and the associated label.

sfpref(ShowTransitionLabelOwner=true)

 sfpref

2-19

ans =

 1

Input Arguments
preference — Stateflow preference to return
"ActionLanguage" | "PatternWizardCustomDir" | "EnableLabelAutoCorrectionForMAL" |
"ShowTransitionLabelOwner"

Stateflow preference to return, specified as one of these values:

• "ActionLanguage" — Default action language used by new Stateflow charts and state transition
tables

• "PatternWizardCustomDir" — Custom pattern folder used by the Pattern Wizard
• "EnableLabelAutoCorrectionForMAL" — Whether Stateflow charts that use MATLAB as the

action language automatically correct common C constructs
• "ShowTransitionLabelOwner" — Whether indicator lines appear between transitions and

associated labels

actionLanguage — Default action language
"MATLAB" (default) | "C"

Default action language used by new Stateflow charts and state transition tables, specified as
"MATLAB" or "C".

customPatternFolder — Custom pattern folder
"" (default) | string scalar | character vector

Custom pattern folder used by the Pattern Wizard, specified as a string scalar or character vector.
Data Types: string | char

autoCorrection — Whether to enable automatic correction of C constructs
true or 1 (default) | false or 0

Whether to enable automatic correction of common C constructs in Stateflow charts that use
MATLAB as the action language, specified as a numeric or logical 1 (true) or 0 (false).

transitionLabelLines — Whether to display indicator lines between transitions and
labels
false or 0 (default) | true or 1

Whether to display the indicator lines between transitions and associated labels, specified as a
numeric or logical 1 (true) or 0 (false), where:

• true — Displays indicator lines for every transition
• false — Displays indicator lines only when label ownership is unclear

Output Arguments
allSettings — Settings for all preferences
structure

2 Functions

2-20

Settings for all Stateflow preferences, returned as a structure with these fields:

• ActionLanguage — Default action language used by new Stateflow charts and state transition
tables, returned as 'MATLAB' or 'C'

• PatternWizardCustomDir — Custom pattern folder used by the Pattern Wizard, returned as a
character vector

• EnableLabelAutoCorrectionForMAL — Whether Stateflow charts that use MATLAB as the
action language automatically correct common C constructs, returned as 1 or 0 of data type
double

• ShowTransitionLabelOwner — Whether indicator lines appear between transitions and
associated labels, returned as 1 or 0 of data type double

setting — Setting for specified preference
any data type, depending on the preference

Setting for specified preference, returned in the format determined by the preference:

• ActionLanguage — 'MATLAB' or 'C'
• PatternWizardCustomDir — character vector
• EnableLabelAutoCorrectionForMAL — 1 or 0 of data type double
• ShowTransitionLabelOwner — 1 or 0 of data type double

Data Types: char | double

Version History
Introduced before R2006a

See Also
sfnew | sfclose | sflib | sfopen | stateflow

Topics
“Modify the Action Language for a Chart”
“Create Flow Charts by Using Pattern Wizard”

 sfpref

2-21

sfprint
Print Stateflow charts

Syntax
sfprint
sfprint(source)
sfprint(source,format)
sfprint(source,format,destination)
sfprint(source,format,destination,wholeChart)

Description
sfprint prints the current chart to the default printer.

sfprint(source) prints all charts specified by source to the default printer.

sfprint(source,format) prints charts by using the specified format to output files. Each output
file name matches the name of the chart and the file extension matches the format.

sfprint(source,format,destination) prints charts to the specified destination.

sfprint(source,format,destination,wholeChart) specifies whether to print the complete or
current view of the charts.

Examples

Print open chart

sfprint

Prints the current chart to the default printer.

Print all charts specified in path

sfprint("sf_car/shift_logic");

Prints the chart with the path sf_car/shift_logic to the default printer.

Print chart specified in path to a JPG file format.

sfprint("sf_car/shift_logic","jpg")

Prints the chart sf_car/shift_logic in JPG format to the file sf_car_shift_logic.jpg.

2 Functions

2-22

Print chart in TIFF format to the clipboard.

sfprint(gcs,"tiff","clipboard")

Prints the chart in the current system to the clipboard in TIFF format.

Print the current view of a chart.

sfprint("sf_car/shift_logic","png","file",0)

Prints the current view of sf_car/shift_logic in a PNG format to the file
sf_car_shift_logic.png.

Input Arguments
source — Source of charts to print
string scalar | character vector | vector of string scalars | cell array of character vectors

Source of charts to print, specified as a string scalar or character vector that contains the path of a
chart, model, subsystem, or block. To specify multiple paths, use a vector of string scalars or cell
array of character vectors. To specify the current block or system of the model, use gcb or gcs.
Example: sfprint(gcs) prints all the charts in the current system to the default printer.
Example: sfprint("sf_pool/Pool") prints the chart sf_pool/Pool to the default printer.
Data Types: string | char

format — Output format
"bitmap" | "jpg" | "meta" | "pdf" | "png" | "svg" | "tiff"

Output format of the printed charts specified as one of these values:

• "bitmap" — Save the chart image to the clipboard as a bitmap (for Windows® operating systems
only).

• "jpg" — Generate a JPEG file.
• "meta" — Save the chart image to the clipboard as an enhanced metafile (for Windows operating

systems only).
• "pdf" — Generate a PDF file.
• "png" — Generate a PNG file.
• "svg" — Generate an SVG file.
• "tiff" — Generate a TIFF file

Example: sfprint("sf_car/shift_logic","jpg") prints the chart sf_car/shift_logic to a
JPEG file named sf_car_shift_logic.jpg in the current folder.
Example: sfprint("sf_bounce/BouncingBall","meta","myImage") prints the chart
sf_bounce/BouncingBall as an enhanced metafile named myImage.emf in the current folder.

destination — Destination for printed charts
"file" (default) | "clipboard" | "printer" | "promptForFile" | string scalar | character vector

Destination for printed charts, specified as one of these values:

 sfprint

2-23

• "file" — Send output to a file with the default name chart_name.file_extension, where the
file name is the name of the chart and the file extension that matches the output format.

• "clipboard" — Copy output to the clipboard.
• "printer" — Send output to the default printer. Use only with "ps" or "eps" formats.
• "promptForFile" — Prompt for path and file name.

Alternatively, you can specify the name of the output file by using a string scalar or character vector.
Example: sfprint("sf_car/shift_logic","png","myFile") prints the chart sf_car/
shift_logic to a PNG file named myFile.png in the current folder.
Example: sfprint(gcb,"pdf","promptForFile") prints all charts in the current block of the
model in PDF format. A dialog box prompts you for the path and name of the output file for each
chart.
Data Types: string | char

wholeChart — Whether to print complete charts
true or 1 (default) | false or 0

Whether to print the complete charts, specified as a numeric or logical 1 (true) or 0 (false).

• true — Print the complete views of the specified charts.
• false — Print the current views of the specified charts.

Example: sfprint(gcs,"png","file",0) prints the current view of the charts in the current
system in PNG format using default file names.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Version History
Introduced before R2006a

See Also
gcb | gcs | sfhelp | sfnew | sfsave | stateflow

2 Functions

2-24

sfroot
Root of Stateflow hierarchy

Syntax
root = sfroot

Description
root = sfroot returns the Simulink.Root object at the top level of the Stateflow hierarchy of
objects. Use the Root object to access all other API objects in your charts. For more information, see
“Access Objects in Your Stateflow Chart”.

Examples

Zoom in on State in Chart

Open a Simulink model called myModel. Suppose that the model contains a Stateflow chart with a
state named A.

open_system("myModel")

Find the state named A.

st = find(sfroot,"-isa","Stateflow.State",Name="A");

Zoom in on the state in the Stateflow Editor.

fitToView(st);

Version History
Introduced before R2006a

See Also
Functions
find | fitToView | open_system

Objects
Stateflow.State

Topics
“Overview of the Stateflow API”
“Access Objects in Your Stateflow Chart”
“Create Charts by Using the Stateflow API”

 sfroot

2-25

sfsave
Save Simulink model

Syntax
sfsave
sfsave modelName
sfsave modelName newModelName
sfsave(___)

Description
sfsave saves the current model in the current folder. The current folder must be writable.

sfsave modelName saves the specified model in the current folder. The specified model must be
open and the current folder must be writable.

sfsave modelName newModelName saves the specified model using a new model name. The
specified model must be open and the current folder must be writable.

sfsave(___) enables you to specify the input arguments in the previous syntaxes by using
variables or strings. For example, you can enter sfsave(var1,var2) where var1 is a variable set
to "OldModel" and var2 is a variable set to "NewModel".

Examples

Save Current Model

Save the model that is currently open.

sfsave

Save Specified Model

Save an open model called MyModel.

sfsave MyModel

Rename Model

Save a model called MyModel using the name MyNewModel.

sfsave MyModel MyNewModel

2 Functions

2-26

Specify Model Name Using a Variable

Save the model whose name is specified by the variable model.

model = "MyModel";
sfsave(model)

Input Arguments
modelName — Name of model
string scalar | character vector

Name of the Simulink model, specified as a string scalar or character vector. To specify the name of
the model using a variable or a string, call sfnew with its input arguments enclosed in parentheses.
Example: sfsave MyModel
Example: sfsave("MyModel")
Data Types: char | string

newModelName — Name of new model
string scalar | character vector

Name of the new Simulink model, specified as a string scalar or character vector. To specify the name
of the new model using a variable or a string, call sfnew with its input arguments enclosed in
parentheses.
Example: sfsave MyModel MyNewModel
Example: sfsave("MyModel","MyNewModel")
Data Types: char | string

Version History
Introduced before R2006a

See Also
sfnew | sfopen | sfclose

Topics
“Create Charts by Using the Stateflow API”
“Create Charts by Using a MATLAB Script”

 sfsave

2-27

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs
that correspond to runID1 and runID2 and returns the result in the
Simulink.sdi.DiffRunResult object diffResult. For more information about the comparison
algorithm, see “How the Simulation Data Inspector Compares Data” (Simulink).

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value) compares the
simulation runs that correspond to runID1 and runID2 using the options specified by one or more
name-value arguments. For more information about comparison options, see “How the Simulation
Data Inspector Compares Data” (Simulink).

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

2 Functions

2-28

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 Simulink.sdi.compareRuns

2-29

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

2 Functions

2-30

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one
or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

 Simulink.sdi.compareRuns

2-31

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0

2 Functions

2-32

 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that
determine how signals are paired with each other for comparison. This example compares data from
simulations of a model of an aircraft longitudinal control system. The simulations used a square wave
input. The first simulation used an input filter time constant of 0.1s and the second simulation used
an input filter time constant of 0.5s.

First, load the simulation data from the session file that contains the data for this example.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains data for four simulations. This example compares data from the first two
runs. Access the run IDs for the first two runs loaded from the session file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Before running the comparison, define how you want the Simulation Data Inspector to align the
signals between the runs. This example aligns signals by their name, then by their block path, and
then by their Simulink identifier.

alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the simulation data in your two runs, using the alignment criteria you specified. The
comparison uses a small time tolerance to account for the effect of differences in the step size used
by the solver on the transition of the square wave input.

diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);

You can use the getResultByIndex function to access the comparison results for the aligned
signals in the runs you compared. You can use the Count property of the
Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each
Simulink.sdi.DiffSignalResult object.

numComparisons = diffResults.count;

for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);

 Simulink.sdi.compareRuns

2-33

 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end

Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance

Input Arguments
runID1 — Baseline run identifier
integer

Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a
run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are
created. You can get the run ID for a run by using the ID property of the Simulink.sdi.Run object,
the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

runID2 — Identifier for run to compare
integer

Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the
Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You
can get the run ID for a run by using the ID property of the Simulink.sdi.Run object, the
Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AbsTol=x,Align=alignOpts

Align — Signal alignment options
Simulink.sdi.AlignType scalar | Simulink.sdi.AlignType vector

Signal alignment options, specified as a Simulink.sdi.AlignType scalar or vector. The
Simulink.sdi.AlignType enumeration includes a value for each option available for pairing each
signal in the baseline run with a signal in the comparison run. You can specify one or more alignment
options for the comparison. To use more than one alignment option, specify an array. When you
specify multiple alignment options, the Simulation Data Inspector aligns signals first by the option in
the first element of the array, then by the option in the second element array, and so on. For more
information, see “Signal Alignment” (Simulink).

2 Functions

2-34

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.SID Automatically assigned Simulink identifier
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB workspace

Example: [Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.BlockPath]
specifies signal alignment by signal name and then by block path.

AbsTol — Global absolute tolerance for comparison
0 (default) | positive-valued scalar

Global absolute tolerance for comparison, specified as a positive-valued scalar.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”
(Simulink).
Example: 0.5
Data Types: double

RelTol — Global relative tolerance for comparison
0 (default) | positive-valued scalar

Global relative tolerance for comparison, specified as a positive-valued scalar. The relative tolerance
is expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”
(Simulink).
Example: 0.1
Data Types: double

TimeTol — Global time tolerance for comparison
0 (default) | positive-valued scalar

Global time tolerance for comparison, specified as a positive-valued scalar, using units of seconds.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about tolerances in the Simulation Data Inspector, see “Tolerance Specification”
(Simulink).
Example: 0.2

 Simulink.sdi.compareRuns

2-35

Data Types: double

DataType — Comparison sensitivity to signal data types
"MustMatch"

Comparison sensitivity to signal data types, specified as "MustMatch". Specify
DataType="MustMatch" when you want the comparison to be sensitive to numeric data type
mismatches in compared signals.

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

The Simulink.sdi.compareRuns function compares the data types for aligned signals before
synchronizing and comparing the signal data. When you do not specify this name-value argument, the
comparison checks data types only to detect a comparison between string and numeric data. For a
comparison between string and numeric data, results are not computed, and the status for the result
is DataTypeMismatch. For aligned signals that have different numeric data types, the comparison
computes results.

When you configure the comparison to stop on the first mismatch, a data type mismatch stops the
comparison. A stopped comparison may not compute results for all signals.

Time — Comparison sensitivity to signal time vectors
"MustMatch"

Comparison sensitivity to signal time vectors, specified as "MustMatch". Specify
Time="MustMatch" when you want the comparison to be sensitive to mismatches in the time
vectors of compared signals. When you specify this name-value argument, the algorithm compares
the time vectors of aligned signals before synchronizing and comparing the signal data.

When the time vectors for signals do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
argument. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data” (Simulink).

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

StartStop — Comparison sensitivity to signal start and stop times
"MustMatch"

Comparison sensitivity to signal start and stop times, specified as "MustMatch". Specify
StartStop="MustMatch" when you want the comparison to be sensitive to mismatches in signal
start and stop times. When you specify this name-value argument, the algorithm compares the start
and stop times for aligned signals before synchronizing and comparing the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

2 Functions

2-36

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not
compute results for all signals.

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
"Metadata" | "Any"

Whether comparison stops on first detected mismatch without comparing remaining signals, specified
as "Metadata" or "Any". A stopped comparison may not compute results for all signals, and can
return a mismatched result more quickly.

• "Metadata" — A mismatch in metadata for aligned signals stops the comparison. Metadata
comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you
configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units
always stop the comparison. You can specify additional name-value arguments to configure the
comparison to check and stop on the first mismatch for additional metadata, such as signal data
type, start and stop times, and time vectors.

• "Any" — A mismatch in metadata or signal data for aligned signals stops the comparison.

ExpandChannels — Whether to compute comparison results for each channel in
multidimensional signals
true or 1 (default) | false or 0

Whether to compute comparison results for each channel in multidimensional signals, specified as
logical true (1) or false (0).

• true or 1 — Comparison expands multidimensional signals represented as a single signal with
nonscalar sample values to a set of signals with scalar sample values and computes a comparison
result for each signal.

The representation of the multidimensional signal in the Simulation Data Inspector as a single
signal with nonscalar sample values does not change.

• false or 0 — Comparison does not compute results for multidimensional signals represented as a
single signal with nonscalar sample values.

Output Arguments
diffResult — Comparison results
Simulink.sdi.DiffRunResult object

Comparison results, returned as a Simulink.sdi.DiffRunResult object.

Limitations

The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

 Simulink.sdi.compareRuns

2-37

Version History
Introduced in R2011b

See Also
Functions
Simulink.sdi.compareSignals | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getRunCount | getResultByIndex

Objects
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult

Topics
“Inspect and Compare Data Programmatically” (Simulink)
“Compare Simulation Data” (Simulink)
“How the Simulation Data Inspector Compares Data” (Simulink)

2 Functions

2-38

stateflow
Open Stateflow block library and create Simulink model that contains an empty chart

Syntax
stateflow

Description
stateflow creates an untitled Simulink model that contains an empty Stateflow chart. The function
also opens the Stateflow block library. From this library, you can drag Stateflow blocks into models.

Tips
• To only create a Simulink model that contains an empty Stateflow block, use the sfnew function.
• To only open the Stateflow block library, use the sflib function.
• To create a standalone chart that you can execute as a MATLAB object, open the Stateflow editor

by using the edit function. For example, at the MATLAB Command Window, enter:

edit chart.sfx

For more information, see “Create Stateflow Charts for Execution as MATLAB Objects”.

Version History
Introduced before R2006a

R2019b: Opening Stateflow
Behavior change in future release

The behavior of the stateflow function will change in a future release. Use sfnew and sflib
instead.

See Also
edit | sflib | sfnew

 stateflow

2-39

Stateflow.exportAsClass
Export MATLAB class for standalone chart

Syntax
Stateflow.exportAsClass(source)
Stateflow.exportAsClass(source,destination)

Description
Stateflow.exportAsClass(source) saves a standalone Stateflow chart as a MATLAB class file in
the current folder. The saved file has the same name as the chart. For example, if source is
chart.sfx, the function saves the MATLAB class in the file chart.m.

Stateflow.exportAsClass(source,destination) saves the chart as a MATLAB class file in the
folder destination.

Note The MATLAB class produced by Stateflow.exportAsClass is intended for debugging
purposes only, and not for production use or manual modification. For more information, see “Tips”
on page 2-41.

Examples

Export Chart in Current Folder

Save Stateflow chart chart.sfx as the MATLAB class file chart.m in the current folder.

Stateflow.exportAsClass("chart.sfx");

Export Chart in Folder Specified by Path

Save Stateflow chart chart.sfx, which is located in folder dir1, as the MATLAB class file chart.m
in the current folder.

Stateflow.exportAsClass(fullfile("dir1","chart.sfx"));

Export Chart to MATLAB Class in Another Folder

Save Stateflow chart chart.sfx, which is located in the current folder, as the MATLAB class file
chart.m in the folder dir2.

2 Functions

2-40

Stateflow.exportAsClass("chart.sfx","dir2");

Input Arguments
source — Path and file name of standalone Stateflow chart
string scalar | character vector

Path and file name of a standalone chart, specified as a string scalar or character vector. You can use
the absolute path from the root folder or the relative path from the current folder. Standalone charts
have the extension .sfx.
Data Types: char | string

destination — Path of destination folder for MATLAB class file
string scalar | character vector

Path of the destination folder for the MATLAB class file, specified as a string scalar or character
vector. You can use the absolute path from the root folder or the relative path from the current folder.
If not specified, the function saves the MATLAB script file in the current folder.
Data Types: char | string

Tips
• Use the code produced by Stateflow.exportAsClass to debug run-time errors that are

otherwise difficult to diagnose. For example, suppose that you encounter an error while executing
a Stateflow chart that controls a MATLAB application. If you export the chart as a MATLAB class
file, you can replace the chart with the class in your application and diagnose the error by using
the MATLAB debugger.

Note Error messages produced by the MATLAB class point to different line numbers than the
corresponding error messages produced by the Stateflow chart.

• When you execute the MATLAB class produced by Stateflow.exportAsClass, the Stateflow
Editor does not animate the original chart.

Version History
Introduced in R2019b

See Also
fullfile

Topics
“Create Stateflow Charts for Execution as MATLAB Objects”

 Stateflow.exportAsClass

2-41

Stateflow.exportToVersion
Export standalone chart for use in previous version of Stateflow

Syntax
exported_file = Stateflow.exportToVersion(source,file_name,version)

Description
exported_file = Stateflow.exportToVersion(source,file_name,version) exports the
chart source to a file named file_name in a format that the specified previous Stateflow version
can load. You can only export to R2019a and later releases.

Examples

Export Chart to an Earlier Version of MATLAB

To complete the export process, you need access to the versions of Stateflow from which and to which
you are exporting.

Using the later version of Stateflow, convert the standalone chart chart.sfx.

edit chart.sfx
Stateflow.exportToVersion("chart","chart_19a.sfx","R2019a")

Using the earlier version of Stateflow, open and resave the exported chart.

edit chart_19a.sfx
sfsave chart_19a

Input Arguments
source — Chart to export
string scalar | character vector

Chart to export, specified as a string scalar or character vector, without any file extension. The chart
must be open in the Stateflow Editor and have no unsaved changes.
Example: "chart"
Data Types: char | string

file_name — Exported file name
string scalar | character vector

Exported file name, specified as a string scalar or character vector. The exported file must not have
the same name as the source chart.
Example: "chart_19a.sfx"
Data Types: char | string

2 Functions

2-42

version — MATLAB release name
"R2019a" | "R2019b" | "R2020a" | ...

MATLAB release name, specified as a string scalar or character vector. Release names are case
sensitive. You can only export to R2019a and later releases.

Output Arguments
exported_file — Absolute path to exported file
character vector

Absolute path to exported file, returned as a character vector.

Tips
Attempting to execute an exported chart before resaving it will result in an error.

Version History
Introduced in R2020a

See Also
edit | sfsave

Topics
“Create Stateflow Charts for Execution as MATLAB Objects”

 Stateflow.exportToVersion

2-43

Stateflow.findMatchingPort
Identify matching entry or exit port

Syntax
matchingPort = Stateflow.findMatchingPort(port)

Description
matchingPort = Stateflow.findMatchingPort(port) returns a Stateflow.Port object that
matches the specified port or junction.

Note Typically, Stateflow.findMatchingPort returns a single Stateflow.Port object.
However, when an entry or exit junction is located in the top level of a linked atomic subchart,
Stateflow.findMatchingPort returns an array that contains a separate Stateflow.Port object
for each instance of the atomic subchart that is open.

Examples

Add Exit Port and Junction to Atomic Subchart

In an atomic subchart called A, add an exit port and an exit junction with the label "exit".

Find the Stateflow.AtomicSubchart object that corresponds to the atomic subchart A in the
chart ch.

atomicSubchart = find(ch,"-isa","Stateflow.AtomicSubchart",Name="A");

Add an exit junction to the atomic subchart. Use the Subchart property of the atomic subchart as
the parent of the exit junction. Display the value of the PortType property of the exit junction.

exitJunction = Stateflow.Port(atomicSubchart.Subchart,"ExitJunction");
exitJunction.PortType

ans =

 'ExitJunction'

Set the label of the exit junction to "exit".

exitJunction.labelString = "exit";

Find the Stateflow.Port object for the matching exit port. Display the value of the PortType
property of the exit port.

exitPort = Stateflow.findMatchingPort(exitJunction);
exitPort.PortType

2 Functions

2-44

ans =

 'ExitPort'

Display the label of the exit port.

exitPort.labelString

ans =

 'exit'

Input Arguments
port — Port or junction
Stateflow.Port object

Port or junction, specified as a Stateflow.Port object.

Tips
• If you move an entry or exit junction to a different parent, Stateflow deletes the Stateflow.Port

object for the matching port and creates a Stateflow.Port object on the new parent. To identify
the new matching port, use the Stateflow.findMatchingPort function.

Version History
Introduced in R2021b

See Also
Functions
find

Objects
Stateflow.AtomicSubchart | Stateflow.Port

Topics
“Overview of the Stateflow API”
“Create Entry and Exit Connections Across State Boundaries”

 Stateflow.findMatchingPort

2-45

Operators

3

after
Execute chart after event broadcast or specified time

Syntax
after(n,E)
after(n,tick)
after(n,time_unit)

Description
after(n,E) returns true if the event E has occurred at least n times since the associated state
became active. Otherwise, the operator returns false.

after(n,tick) returns true if the chart has woken up at least n times since the associated state
became active. Otherwise, the operator returns false.

The implicit event tick is not supported when a Stateflow chart in a Simulink model has input
events.

after(n,time_unit) returns true if at least n units of time have elapsed since the associated
state became active. Otherwise, the operator returns false.

In charts in a Simulink model, specify time_unit as seconds (sec), milliseconds (msec), or
microseconds (usec). If you specify n as an expression, the chart adjusts the temporal delay as the
expression changes value during the simulation.

In standalone charts in MATLAB, specify n with a value greater than or equal to 0.001 and
time_unit as seconds (sec). The operator creates a MATLAB timer object that generates an
implicit event to wake up the chart. MATLAB timer objects are limited to 1 millisecond precision.
For more information, see “Events in Standalone Charts”.

• The timer object is created when the chart finishes executing the entry actions of the associated
state and its substates. If you specify n as an expression whose value changes during chart
execution, the chart does not adjust the temporal delay of the timer object.

• The timer object starts running at the end of the chart step when the associated state becomes
active. This step can include the execution of other parallel states in the chart.

• If the chart is processing another operation when it receives the implicit event from the timer
object, the chart queues the event. When the current step is completed, the chart processes the
event.

• If the state associated with the temporal logic operator becomes inactive before the chart
processes the implicit event, the event does not wake up the chart.

Examples

3 Operators

3-2

Execute State Action on Event Broadcast

Display a status message when the chart processes a broadcast of the event E, starting on the third
broadcast of E after the state became active.

on after(3,E):
 disp("ON");

Trigger Transition on Event Broadcast

Transition out of the associated state when the chart processes a broadcast of the event E, starting on
the fifth broadcast of E after the state became active.

after(5,E)

Guard Transition with Temporal Condition

Transition out of the associated state if the state has been active for at least five broadcasts of the
event E.

In charts in a Simulink model, enter:

[after(5,E)]

Conditional notation for temporal logic operators is not supported in standalone charts in MATLAB.

Trigger Transition on Chart Execution

Transition out of the associated state when the chart wakes up for at least the seventh time since the
state became active, but only if the variable temp is greater than 98.6.

 after

3-3

after(7,tick)[temp > 98.6]

Execute State Action After Specified Time

Set the temp variable to LOW every time that the chart wakes up, starting when the associated state
is active for at least 12.3 seconds.

on after(12.3,sec):
 temp = LOW;

Tips
• You can use quotation marks to enclose the keywords 'tick', 'sec', 'msec', and 'usec'. For

example, after(5,'tick') is equivalent to after(5,tick).
• The Stateflow chart resets the counter used by the after operator each time the associated state

reactivates.
• The timing for absolute-time temporal logic operators depends on the type of Stateflow chart:

• Charts in a Simulink model define absolute-time temporal logic in terms of simulation time.
• Standalone charts in MATLAB define absolute-time temporal logic in terms of wall-clock time,

which is limited to 1 millisecond precision.

The difference in timing can affect the behavior of a chart. For example, suppose that this chart is
executing the during action of state A.

• In a Simulink model, the function call to f executes in a single time step and does not
contribute to the simulation time. The transition from state A to state B occurs the first time
the chart wakes up and state A has been active for at least 2 seconds. The value displayed by
the entry action in state B depends only on the step size used by the Simulink solver.

3 Operators

3-4

• In a standalone chart, the function call to f can take several seconds of wall-clock time to
complete. If the call lasts more than two seconds, the chart queues the implicit event
associated with the after operator. The transition from state A to state B occurs when the
function f finishes executing. The value displayed by the entry action in state B depends on
the time the function call to f takes to complete.

Version History
Introduced in R2014b

See Also
at | before | every | timer

Topics
“Control Chart Execution by Using Temporal Logic”
“Use Events to Execute Charts”
“Control Chart Behavior by Using Implicit Events”

 after

3-5

ascii2str
Convert array of type uint8 to string

Syntax
str = ascii2str(A)

Description
str = ascii2str(A) converts ASCII values in array A of type uint8 to a string.

Note The operator ascii2str is supported only in Stateflow charts that use C as the action
language.

Examples

Array of Type uint8 to String

Return string "Hi!".

A[0] = 72;
A[1] = 105;
A[2] = 33;
str = ascii2str(A);

Version History
Introduced in R2018b

See Also
str2ascii

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-6

at
Execute chart at event broadcast or specified time

Syntax
at(n,E)
at(n,tick)
at(n,sec)

Description
at(n,E) returns true if the event E has occurred exactly n times since the associated state became
active. Otherwise, the operator returns false.

at(n,tick) returns true if the chart has woken up exactly n times since the associated state
became active. Otherwise, the operator returns false.

The implicit event tick is not supported when a Stateflow chart in a Simulink model has input
events.

at(n,sec) returns true if exactly n seconds have elapsed since the associated state became active.
Otherwise, the operator returns false.

In standalone charts in MATLAB, specify n with a value greater than or equal to 0.001. The operator
creates a MATLAB timer object that generates an implicit event to wake up the chart. MATLAB
timer objects are limited to 1 millisecond precision. For more information, see “Events in Standalone
Charts”.

• The timer object is created when the chart finishes executing the entry actions of the associated
state and its substates. If you specify n as an expression whose value changes during chart
execution, the chart does not adjust the temporal delay of the timer object.

• The timer object starts running at the end of the chart step when the associated state becomes
active. This step can include the execution of other parallel states in the chart.

• If the chart is processing another operation when it receives the implicit event from the timer
object, the chart queues the event. When the current step is completed, the chart processes the
event.

• If the state associated with the temporal logic operator becomes inactive before the chart
processes the implicit event, the event does not wake up the chart.

Note This syntax is supported only in standalone charts in MATLAB. For charts in Simulink models,
use the after operator instead. For more information, see “Do Not Use at for Absolute-Time
Temporal Logic in Charts in Simulink Models”.

Examples

 at

3-7

Execute State Action on Event Broadcast

Display a status message when the chart processes the third broadcast of the event E after the state
became active.

on at(3,E):
 disp("ON");

Trigger Transition on Event Broadcast

Transition out of the associated state when the chart processes the fifth broadcast of the event E after
the state became active.

at(5,E)

Guard Transition with Temporal Condition

Transition out of the associated state if the state has been active for exactly five broadcasts of the
event E.

In charts in a Simulink model, enter:

[at(5,E)]

Conditional notation for temporal logic operators is not supported in standalone charts in MATLAB.

Trigger Transition on Chart Execution

Transition out of the associated state when the chart wakes up for the seventh time since the state
became active, but only if the variable temp is greater than 98.6.

3 Operators

3-8

at(7,tick)[temp > 98.6]

Execute State Action at Specified Time

Set the temp variable to HIGH if the state has been active for exactly 12.3 seconds.

In standalone charts in MATLAB, enter:

on at(12.3,sec):
 temp = HIGH;

Using every as an absolute-time temporal logic operator is not supported in charts in Simulink
models.

Tips
• You can use quotation marks to enclose the keywords 'tick' and 'sec'. For example,

at(5,'tick') is equivalent to at(5,tick).
• The Stateflow chart resets the counter used by the at operator each time the associated state

reactivates.
• Standalone charts in MATLAB define absolute-time temporal logic in terms of wall-clock time,

which is limited to 1 millisecond precision.

Version History
Introduced in R2014b

See Also
after | before | every | timer

Topics
“Control Chart Execution by Using Temporal Logic”
“Use Events to Execute Charts”
“Control Chart Behavior by Using Implicit Events”

 at

3-9

before
Execute chart before event broadcast or specified time

Syntax
before(n,E)
before(n,tick)
before(n,time_unit)

Description
before(n,E) returns true if the event E has occurred fewer than n times since the associated state
became active. Otherwise, the operator returns false.

before(n,tick) returns true if the chart has woken up fewer than n times since the associated
state became active. Otherwise, the operator returns false.

The implicit event tick is not supported when a Stateflow chart in a Simulink model has input
events.

before(n,time_unit) returns true if fewer than n units of time have elapsed since the associated
state became active. Otherwise, the operator returns false.

Specify time_unit as seconds (sec), milliseconds (msec), or microseconds (usec). If you specify n
as an expression, the chart adjusts the temporal delay as the expression changes value during the
simulation.

Note The temporal logic operator before is supported only in Stateflow charts in Simulink models.

Examples

Execute State Action on Event Broadcast

Display a status message when the chart processes the first and second broadcasts of the event E
after the state became active.

on before(3,E):
 disp("ON");

3 Operators

3-10

Trigger Transition on Event Broadcast

Transition out of the associated state when the chart processes a broadcast of the event E, but only if
the state has been active for fewer than five broadcasts of E.

before(5,E)

Guard Transition with Temporal Condition

Transition out of the associated state if the state has been active for fewer than five broadcasts of the
event E.

[before(5,E)]

Trigger Transition on Chart Execution

Transition out of the associated state when the chart wakes up, but only if the variable temp is
greater than 98.6 and the chart has woken up fewer than seven times since the state became active.

before(7,tick)[temp > 98.6]

Execute State Action Before Specified Time

Set the temp variable to MED every time that the chart wakes up, but only if the associated state has
been active for fewer 12.3 seconds.

on before(12.3,sec):
 temp = MED;

 before

3-11

Tips
• You can use quotation marks to enclose the keywords 'tick', 'sec', 'msec', and 'usec'. For

example, before(5,'tick') is equivalent to before(5,tick).
• The Stateflow chart resets the counter used by the before operator each time the associated

state reactivates.

Version History
Introduced in R2014b

See Also
after | at | every

Topics
“Control Chart Execution by Using Temporal Logic”

3 Operators

3-12

blanks
Character array of spaces

Syntax
blanks(n)

Description
blanks(n) creates a 1-by-n array of space characters. Use the return value in combination with the
string operator to create a string of n spaces.

Note The operator blanks is not supported in Stateflow charts that use C as the action language.

Examples

Create String of Spaces

Create string that contains five spaces.

str = string(blanks(5));

Version History
Introduced in R2021b

See Also
string

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 blanks

3-13

boolean
Convert numeric value to Boolean value

Syntax
tf = boolean(X)

Description
tf = boolean(X) converts the numeric expression X into a Boolean value. If the expression
evaluates to zero, boolean returns logical 0 (false). Otherwise, boolean returns logical 1 (true).

Note The operator boolean is supported only in Stateflow charts. In MATLAB, use logical.

Examples

Convert Numeric Expression to Boolean Value

Cast the expression x+3 as a Boolean value and assign the value to the data y.

y = boolean(x+3);

Input Arguments
X — Numeric expression
scalar | vector | matrix | multidimensional array

Numeric expression, specified as a scalar, vector, matrix, or multidimensional array.
Example: boolean(x+3)

Version History
Introduced before R2006a

See Also
logical

3 Operators

3-14

Topics
“Type Cast Operations”

 boolean

3-15

change, chg
Generate implicit event when data changes value

Syntax
change(data_name)
chg(data_name)

Description
change(data_name) generates an implicit local event when the chart sets the value of the variable
data_name. If more than one data object has the same name, use dot notation to specify the name of
the data object. For more information, see “Identify Data by Using Dot Notation”.

chg(data_name) is an alternative way to execute change(data_name).

Examples

Implicit Event When Data Changes Value

Define an implicit local event when a state or transition action writes a value to the variable
Engine.rpm.

change(Engine.rpm)

Tips
• The change operator is supported only in Stateflow charts in Simulink models.

3 Operators

3-16

Version History
Introduced before R2006a

See Also
hasChanged | hasChangedFrom | hasChangedTo

Topics
“Control Chart Behavior by Using Implicit Events”
“Use Events to Execute Charts”
“Detect Changes in Data and Expression Values”

 change, chg

3-17

contains
Determine if string contains substring

Syntax
tf = contains(str,substr)
tf = contains(str,substr,IgnoreCase=true)

Description
tf = contains(str,substr) returns 1 (true) if the string str contains the substring substr,
and returns 0 (false) otherwise.

tf = contains(str,substr,IgnoreCase=true) checks if str contains substr, ignoring any
differences in letter case.

Note The contains operator is not supported in Stateflow charts that use C as the action language.

Examples

Determine if String Contains Substring

Return a value of 0 (false) because the string "Hello, world!" does not contain the substring
"World".

str = "Hello, world!";
substr = "World";
x = contains(str,substr);

Determine if String Contains Substring While Ignoring Case

Return a value of 1 (true) because the string "Hello, world!" contains the substring "World"
when you ignore case.

str = "Hello, world!";
substr = "World";
x = contains(str,substr,IgnoreCase=true);

3 Operators

3-18

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
startsWith | endsWith | strfind

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 contains

3-19

count
Number of chart executions during which condition is valid

Syntax
count(C)

Description
count(C) returns the number of times that the chart has woken up since the conditional expression
C became true and the associated state became active.

Examples

Guard Transition with Temporal Condition

Transition out of the associated state when the variable x has been greater than or equal to 2 for
longer than five chart executions.

[count(x>=2) > 5]

Determine Number of Chart Executions

Store the number of chart executions since the variable x became greater than 5.

en,du:
 y = count(x>5);

Tips
• The Stateflow chart resets the value of the count operator if the conditional expression becomes

false or if the associated state becomes inactive.

3 Operators

3-20

• When a chart in a Simulink model does not have input events, the value of count depends on the
step size. Changing the solver or step size for the model affects the results produced by the count
operator.

• To ensure that your Stateflow chart simulates without error, do not use count in these objects:

• Continuous time charts
• Graphical, MATLAB, or Simulink functions
• Simulink based states
• Transitions that can be reached from multiple states
• Default transitions

Version History
Introduced in R2019a

See Also
duration | elapsed | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”

 count

3-21

crossing
Detect rising or falling edge in data since last time step

Syntax
tf = crossing(expression)

Description
tf = crossing(expression) returns 1 (true) if:

• The previous value of expression was positive and its current value is zero or negative.
• The previous value of expression was zero and its current value is nonzero.
• The previous value of expression was negative and its current value is zero or positive.

Otherwise, the operator returns 0 (false). If expression changes value from positive to zero to
negative or from negative to zero to positive at three consecutive time steps, the operator detects a
single edge when the value of expression becomes zero.

The argument expression:

• Must be a scalar-valued expression
• Can combine chart input data, constants, nontunable parameters, continuous-time local data, and

state data from Simulink based states
• Can include addition, subtraction, and multiplication of scalar variables, elements of a matrix,
fields in a structure, or any valid combination of structure fields and matrix elements

Index elements of a matrix by using numbers or expressions that evaluate to a constant integer.

Note Edge detection is supported only in Stateflow charts in Simulink models.

Examples

Detect Signal Crossing Threshold

Transition out of state if the value of the input data signal crosses a threshold of 2.5.

[crossing(signal-2.5)]

3 Operators

3-22

The edge is detected when the value of the expression signal-2.5 becomes zero or changes sign.

Tips
• The operator crossing imitates the behavior of a Trigger block with Trigger Type set to

either.
• Edge detection for continuous-time local data and state data from Simulink based states is

supported only in transition conditions.
• In atomic subcharts, map all input data that you use in edge detection expressions to input data or

nontunable parameters in the main chart. Mapping these input data to output data, local data, or
tunable parameters can result in undefined behavior.

Version History
Introduced in R2021b

See Also
falling | rising | Trigger

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”

 crossing

3-23

discard
Discard message

Syntax
discard(message_name)

Description
discard(message_name) discards a valid input or local message. After a chart discards a message,
it can remove another message from the queue in the same time step. A chart cannot access the data
of a discarded message.

Examples

Discard Message in State Action

Check the queue for message M. If a message is present, remove it from the queue. If the message
has a data value equal to 3, discard the message.

during:
 if receive(M) == true
 if M.data == 3
 discard(M);
 end
 end

Version History
Introduced in R2015b

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”

3 Operators

3-24

duration
Time during which condition is valid

Syntax
time = duration(condition)
time = duration(condition,time_unit)

Description
time = duration(condition) returns the length of time, in seconds, that condition stays true
and the associated state became active.

time = duration(condition,time_unit) returns the length of time in the unit specified by
time_unit.

Note The temporal logic operator duration is not supported in standalone charts in MATLAB.

Examples

Guard Transition with Temporal Condition

Transition out of the state when the variable x has been greater than or equal to 0 for longer than 0.1
seconds.

[duration(x>=0) > 0.1]

Determine Elapsed Time

Store the number of milliseconds since the variable x became greater than 5 and the state became
active.

en,du:
 y = duration(x>5,msec);

 duration

3-25

Input Arguments
condition — Logical condition
true | false

Logical condition, specified as true or false. You can specify the value of condition by using an
expression that evaluates to true or false. The operator evaluates condition at each time step.

condition does not support expressions that depend on local or output data.
Example: duration(u)
Example: duration(u>=0)

time_unit — Units of time
sec (default) | msec | usec

Units of time that duration returns, specified in seconds (sec), milliseconds (msec), or
microseconds (usec).

Tips
• You can use quotation marks to enclose the keywords 'sec', 'msec', and 'usec'. For example,

duration(x > 0,'sec') is equivalent to duration(x > 0,sec).
• The Stateflow chart resets the value of the duration operator if the conditional expression C

becomes false or if the associated state becomes inactive.
• The duration operator does not support conditions that depend on local or output structures.

For more information, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2017a

See Also
count | elapsed | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”
“Control Oscillations by Using the duration Operator”
“Reduce Transient Signals by Using Debouncing Logic”
“Implement an Automatic Transmission Gear System by Using the duration Operator”

3 Operators

3-26

elapsed, et
Time since state became active

Syntax
elapsed(sec)
et

Description
elapsed(sec) returns the length of time that has elapsed since the associated state became active.

et is an alternative way to execute elapsed(sec).

Note The expressions elapsed(sec) and et are equivalent to temporalCount(sec).

Examples

Determine Time of State Activity

Store the number of seconds since the state became active.

en,du:
 y = elapsed(sec);

Display Elapsed Time

When the chart processes a broadcast of the event E, transition out of the associated state and
display the elapsed time since the state became active.

E{disp(et);}

 elapsed, et

3-27

Tips
• In state and transition actions, you can use quotation marks to enclose the keyword 'sec'. For

example, elapsed('sec') is equivalent to elapsed(sec).
• The Stateflow chart resets the counter used by the elapsed operator each time the associated

state reactivates.
• The timing for absolute-time temporal logic operators depends on the type of Stateflow chart:

• Charts in a Simulink model define temporal logic in terms of simulation time.
• Standalone charts in MATLAB define temporal logic in terms of wall-clock time.

The difference in timing can affect the behavior of a chart. For example, suppose that this chart is
executing the entry action of state A.

• In a Simulink model, the function call to f executes in a single time step and does not
contribute to the simulation time. After calling the function f, the chart assigns a value of zero
to y.

• In a standalone chart, the function call to f can take several seconds of wall-clock time to
complete. After calling the function f, the chart assigns the nonzero time that has elapsed
since state A became active to y.

Version History
Introduced in R2017a

See Also
count | duration | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”

3 Operators

3-28

endsWith
Determine if string ends with substring

Syntax
tf = endsWith(str,substr)
tf = endsWith(str,substr,IgnoreCase=true)

Description
tf = endsWith(str,substr) returns 1 (true) if the string str ends with the substring substr,
and returns 0 (false) otherwise.

tf = endsWith(str,substr,IgnoreCase=true) checks if str ends with substr, ignoring any
differences in letter case.

Note The endsWith operator is not supported in Stateflow charts that use C as the action language.

Examples

Determine if String Ends with Substring

Return a value of 0 (false) because the string "Hello, world!" does not end with the substring
"World!".

str = "Hello, world!";
substr = "World!";
x = endsWith(str,substr);

Determine if String Ends with Substring While Ignoring Case

Return a value of 1 (true) because the string "Hello, world!" ends with the substring "World!"
when you ignore case.

str = "Hello, world!";
substr = "World!";
x = endsWith(str,substr,IgnoreCase=true);

 endsWith

3-29

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
contains | startsWith | strfind

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-30

enter, en
Generate implicit event when state becomes active

Syntax
enter(state_name)
en(state_name)

Description
enter(state_name) generates an implicit local event when the chart execution enters the state
state_name. If more than one state has the same name, use dot notation to specify the name of the
state. For more information, see “State Name”.

en(state_name) is an alternative way to execute enter(state_name).

Examples

Implicit Event When State Becomes Active

Define an implicit local event when the chart execution enters the state Fan.On.

enter(Fan.On)

Tips
The enter operator is supported only in Stateflow charts in Simulink models.

Version History
Introduced before R2006a

 enter, en

3-31

See Also
exit | in

Topics
“Control Chart Behavior by Using Implicit Events”
“Use Events to Execute Charts”
“Check State Activity by Using the in Operator”

3 Operators

3-32

erase
Delete substrings within strings

Syntax
newStr = erase(str,substr)

Description
newStr = erase(str,substr) deletes instances of the substring substr that occur in the string
str.

Note The erase operator is not supported in Stateflow charts that use C as the action language.

Examples

Erase Substring from a String

Delete a substring to form the string "Hello!"

str = "Hello, world!";
newstr = erase(str,", world");

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

 erase

3-33

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
eraseBetween

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-34

eraseBetween
Delete substring between start and end points

Syntax
newStr = eraseBetween(str,startStr,endStr)
newStr = eraseBetween(str,startPos,endPos)
newStr = eraseBetween(___ ,Boundaries=bounds)

Description
newStr = eraseBetween(str,startStr,endStr) deletes the substring in str between the
substrings startStr and endStr. eraseBetween does not delete startStr and endStr
themselves.

newStr = eraseBetween(str,startPos,endPos) deletes the substring in str between the
character positions startPos and endPos, including the characters at those positions.

newStr = eraseBetween(___ ,Boundaries=bounds) includes or excludes the boundaries
specified in the previous syntaxes from the substrings that the operator deletes. Specify bounds as
"inclusive" or "exclusive".

Note The eraseBetween operator is not supported in Stateflow charts that use C as the action
language.

Examples

Erase Text Between Substrings

Delete a substring to form the string "Hello!". By default, eraseBetween does not delete the
boundary substrings.

str = "Hello, world!";
newStr = eraseBetween(str,"Hello","!");

Alternatively, use the option Boundaries="inclusive" to delete the boundary substrings.

str = "Hello, world!";
newStr = eraseBetween(str,",","d",new,Boundaries="inclusive");

 eraseBetween

3-35

Erase Text Between Start and End Positions

Delete a substring to form the string "Hello!". By default, eraseBetween deletes the boundary
characters.

str = "Hello, world!";
newStr = eraseBetween(str,6,12);

Alternatively, use the Boundaries="exclusive" option to prevent deletion of the boundary
characters.

str = "Hello, world!";
newStr = eraseBetween(str,5,13,new,Boundaries="exclusive");

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

startStr — Starting substring
string scalar

Staring substring, specified as a string scalar. Enclose literal strings with double quotes.

3 Operators

3-36

endStr — Ending substring
string scalar

Ending substring, specified as a string scalar. Enclose literal strings with double quotes.

startPos — Starting character position
positive integer

Starting character position, specified as a positive integer.

endPos — Ending character position
positive integer

Ending character position, specified as a positive integer.

bounds — Boundary type
"inclusive" | "exclusive"

Boundary type, specified as either "inclusive" or "exclusive". When you set bounds to
"inclusive", replaceBetween erases the text between and including the boundaries. When you
set bounds to "exclusive", replaceBetween erases the text only between the boundaries.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
erase | replaceBetween

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 eraseBetween

3-37

every
Execute chart at regular intervals

Syntax
every(n,E)
every(n,tick)
every(n,sec)

Description
every(n,E) returns true at every nth occurrence of the event E since the associated state became
active. Otherwise, the operator returns false.

every(n,tick) returns true at every nth time that the chart wakes up since the associated state
became active. Otherwise, the operator returns false.

The implicit event tick is not supported when a Stateflow chart in a Simulink model has input
events.

every(n,sec) returns true every n seconds since the associated state became active. Otherwise,
the operator returns false.

In standalone charts in MATLAB, specify n with a value greater than or equal to 0.001. The operator
creates a MATLAB timer object that generates an implicit event to wake up the chart. MATLAB
timer objects are limited to 1 millisecond precision. For more information, see “Events in Standalone
Charts”.

• The timer object is created when the chart finishes executing the entry actions of the associated
state and its substates. For subsequent iterations, the timer object is reset when the chart
finishes executing the during actions of the associated state and its substates. If you specify n as
an expression whose value changes during chart execution, the chart adjusts the temporal delay
only when the timer object is reset.

• The timer object starts running at the end of the chart step when the associated state becomes
active. This step can include the execution of other parallel states in the chart.

• If the chart is processing another operation when it receives the implicit event from the timer
object, the chart queues the event. When the current step is completed, the chart processes the
event and resets the timer object for the next iteration.

• If the state associated with the temporal logic operator becomes inactive before the chart
processes the implicit event, the event does not wake up the chart.

Note This syntax is supported only in standalone charts in MATLAB. In charts in Simulink models,
use an outer self-loop transition with the after operator instead. For more information, see “Do Not
Use every for Absolute-Time Temporal Logic in Charts in Simulink Models”.

Examples

3 Operators

3-38

Execute State Action on Event Broadcast

Display a status message when the chart processes every third broadcast of the event E after the
state became active.

on every(3,E):
 disp("ON");

Trigger Transition on Event Broadcast

Transition out of the associated state when the chart processes every fifth broadcast of the event E
after the state became active.

every(5,E)

Trigger Transition on Chart Execution

Transition out of the associated state every seventh tick event since the state became active, but
only if the variable temp is greater than 98.6.

every(7,tick)[temp > 98.6]

Execute State Action at Specified Time

Increment the temp variable by 5 every 12.3 seconds that the state is active.

In standalone charts in MATLAB, enter:

on every(12.3,sec):
 temp = temp+5;

 every

3-39

Using every as an absolute-time temporal logic operator is not supported in charts in Simulink
models.

Tips
• You can use quotation marks to enclose the keywords 'tick' and 'sec'. For example,

every(5,'tick') is equivalent to every(5,tick).
• The Stateflow chart resets the counter used by the every operator each time the associated state

reactivates.
• Standalone charts in MATLAB define absolute-time temporal logic in terms of wall-clock time,

which is limited to 1 millisecond precision.

Version History
Introduced in R2014b

See Also
after | at | before | timer

Topics
“Control Chart Execution by Using Temporal Logic”
“Use Events to Execute Charts”
“Control Chart Behavior by Using Implicit Events”

3 Operators

3-40

exit, ex
Generate implicit event when state becomes inactive

Syntax
exit(state_name)
ex(state_name)

Description
exit(state_name) generates an implicit local event when the chart execution exits the state
state_name. If more than one state has the same name, use dot notation to specify the name of the
state. For more information, see “State Name”.

ex(state_name) is an alternative way to execute exit(state_name).

Examples

Implicit Event When State Becomes Inactive

Define an implicit local event when the chart execution exits the state Fan.Off.

exit(Fan.Off)

Tips
The exit operator is supported only in Stateflow charts in Simulink models.

Version History
Introduced before R2006a

 exit, ex

3-41

See Also
enter | in

Topics
“Control Chart Behavior by Using Implicit Events”
“Use Events to Execute Charts”
“Check State Activity by Using the in Operator”

3 Operators

3-42

extractAfter
Extract substring after position

Syntax
newStr = extractAfter(str,subStr)
newStr = extractAfter(str,pos)

Description
newStr = extractAfter(str,subStr) returns the substring of str that begins after the last
occurrence of the substring subStr.

newStr = extractAfter(str,pos) returns the substring of str that begins after the character
position pos.

Note The extractAfter operator is not supported in Stateflow charts that use C as the action
language. For similar functionality, use substr.

Examples

Extract Text After Substring

Extract substring "world!" from a longer string.

str = "Hello, world!";
newStr = extractAfter(str,"Hello, ");

Extract Text After Position

Extract substring "world!" from a longer string.

str = "Hello, world!";
newStr = extractAfter(str,7);

 extractAfter

3-43

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

pos — Character position
positive integer

Character position, specified as a positive integer.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
extractBefore | substr | insertAfter

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-44

extractBefore
Extract substring before position

Syntax
newStr = extractBefore(str,subStr)
newStr = extractBefore(str,pos)

Description
newStr = extractBefore(str,subStr) returns the substring of str that ends before the first
occurrence of the substring subStr.

newStr = extractBefore(str,pos) returns the substring of str that ends before the character
position pos.

Note The extractBefore operator is not supported in Stateflow charts that use C as the action
language. For similar functionality, use substr.

Examples

Select Text Before Substring

Extract substring "Hello" from a longer string.

str = "Hello, world!";
newStr = extractBefore(str,", world");

Select Text Before a Position

Extract substring "Hello" from a longer string.

str = "Hello, world!";
newstr = extractBefore(str,6);

 extractBefore

3-45

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

pos — Character position
positive integer

Character position, specified as a positive integer.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
extractAfter | substr | insertBefore

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-46

falling
Detect falling edge in data since last time step

Syntax
tf = falling(expression)

Description
tf = falling(expression) returns 1 (true) if:

• The previous value of expression was positive and its current value is zero or negative.
• The previous value of expression was zero and its current value is negative.

Otherwise, the operator returns 0 (false). If expression changes value from positive to zero to
negative at three consecutive time steps, the operator detects a single edge when the value of
expression becomes zero.

The argument expression:

• Must be a scalar-valued expression
• Can combine chart input data, constants, nontunable parameters, continuous-time local data, and

state data from Simulink based states
• Can include addition, subtraction, and multiplication of scalar variables, elements of a matrix,
fields in a structure, or any valid combination of structure fields and matrix elements

Index elements of a matrix by using numbers or expressions that evaluate to a constant integer.

Note Edge detection is supported only in Stateflow charts in Simulink models.

Examples

Detect Falling Edge

Transition out of state if the value of the input data signal falls below a threshold of 2.5.

[falling(signal-2.5)]

 falling

3-47

The falling edge is detected when the value of the expression signal-2.5 becomes zero or negative.

Tips
• The operator falling imitates the behavior of a Trigger block with Trigger Type set to

falling.
• Edge detection for continuous-time local data and state data from Simulink based states is

supported only in transition conditions.
• In atomic subcharts, map all input data that you use in edge detection expressions to input data or

nontunable parameters in the main chart. Mapping these input data to output data, local data, or
tunable parameters can result in undefined behavior.

Version History
Introduced in R2021b

See Also
crossing | rising | Trigger

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”

3 Operators

3-48

forward
Forward message

Syntax
forward(message_in_name,message_out_name)

Description
forward(message_in_name,message_out_name) forwards a valid input or local message to a
local queue or an output port. After a chart forwards a message, it can remove another message from
the queue in the same time step.

Examples

Forward an Input Message

Check the input queue for message M_in. If a message is present, remove the message from the
queue and forward it to the output port M_out.

on M_in:
 forward(M_in,M_out);

Forward a Local Message

Check the local queue for message M_local. If a message is present, transition from state A to state
B. Remove the message from the M_local message queue and forward it to the output port M_out.

M_local{forward(M_local,M_out)}

Version History
Introduced in R2015b

 forward

3-49

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”

3 Operators

3-50

hasChanged
Detect change in data since last time step

Syntax
tf = hasChanged(data)

Description
tf = hasChanged(data) returns 1 (true) if the value of data at the beginning of the current time
step is different from the value of data at the beginning of the previous time step. Otherwise, the
operator returns 0 (false).

Examples

Detect Change in Matrix

Transition out of state if any element of the matrix M has changed value since the last time step or
input event.

[hasChanged(M)]

Detect Change in Matrix Element

Transition out of state if the element in row 1 and column 3 of the matrix M has changed value since
the last time step or input event.

In charts that use MATLAB as the action language, use:

[hasChanged(M(1,3))]

 hasChanged

3-51

In charts that use C as the action language, use:

[hasChanged(M[0][2])]

Detect Change in Structure

Transition out of state if any field of the structure struct has changed value since the last time step
or input event.

[hasChanged(struct)]

Detect Change in Structure Field

Transition out of state if the field struct.field has changed value since the last time step or input
event.

[hasChanged(struct.field)]

Input Arguments
data — Data
scalar | matrix | structure | ...

Stateflow data, specified as a:

3 Operators

3-52

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to an
integer. See “Operations for Vectors and Matrices in Stateflow”.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation. See “Index and Assign Values to
Stateflow Structures”.

The argument data cannot be a nontrivial expression or a custom code variable.

Standalone charts in MATLAB do not support change detection on an element of a matrix or a field in
a structure.

Tips
• If multiple input events occur in the same time step, the hasChanged operator can detect

changes in data value between input events.
• If the chart writes to the data object but does not change the data value, the hasChanged

operator returns false.
• The type of Stateflow chart determines the scope of the data supported by the change detection

operators:

• Standalone Stateflow charts in MATLAB: Local only
• In Simulink models, charts that use MATLAB as the action language: Input only
• In Simulink models, charts that use C as the action language: Input, Output, Local, or Data

Store Memory
• In a standalone chart in MATLAB, a change detection operator can detect changes in data
specified in a call to the step function because these changes occur before the start of the
current time step. For example, if x is equal to zero, the expression hasChanged(x) returns true
when you execute the chart ch with the command:

step(ch,x=1);

In contrast, a change detection operator cannot detect changes in data caused by assignments in
state or transition actions in the same time step. Instead, the operator detects the change in value
at the start of the next time step.

• In a chart in a Simulink model, if you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, using an output as the argument of the hasChanged operator always returns
false. For more information, see “Initialize outputs every time chart wakes up”.

• When row-major array layout is enabled in charts that use hasChanged, code generation
produces an error. Before generating code in charts that use hasChanged, enable column-major
array layout. See “Select Array Layout for Matrices in Generated Code”.

 hasChanged

3-53

Version History
Introduced in R2007a

See Also
hasChangedFrom | hasChangedTo

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”
“Assign Values to All Elements of a Matrix”

3 Operators

3-54

hasChangedFrom
Detect change in data from specified value

Syntax
tf = hasChangedFrom(data,value)

Description
tf = hasChangedFrom(data,value) returns 1 (true) if the value of data is equal to value at
the beginning of the previous time step and is a different value at the beginning of the current time
step. Otherwise, the operator returns 0 (false).

Examples

Detect Change in Matrix

Transition out of state if the previous value of the matrix M was equal to matrixValue and any
element of M has changed value since the last time step or input event.

[hasChangedFrom(M,matrixValue)]

Detect Change in Matrix Element

Transition out of state if the element in row 1 and column 3 of the matrix M has changed from the
value 7 since the last time step or input event.

In charts that use MATLAB as the action language, use:

[hasChangedFrom(M(1,3),7)]

 hasChangedFrom

3-55

In charts that use C as the action language, use:

[hasChangedFrom(M[0][2],7)]

Detect Change in Structure

Transition out of state if the previous value of the structure struct was equal to structValue and
any field of struct has changed value since the last time step or input event.

[hasChangedFrom(struct,structValue)]

Detect Change in Structure Field

Transition out of state if the field struct.field has changed from the value 5 since the last time
step or input event.

[hasChangedFrom(struct.field,5)]

Input Arguments
data — Data
scalar | matrix | structure | ...

Stateflow data, specified as a:

3 Operators

3-56

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to an
integer. See “Operations for Vectors and Matrices in Stateflow”.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation. See “Index and Assign Values to
Stateflow Structures”.

The argument data cannot be a nontrivial expression or a custom code variable.

Standalone charts in MATLAB do not support change detection on an element of a matrix or a field in
a structure.

value — Value of data at previous time step
scalar | matrix | structure

Value of the data at previous time step, specified as the same data type of data. value must be an
expression that resolves to a value that is comparable with data:

• If data is a scalar, then value must resolve to a scalar.
• If data is a matrix, then value must resolve to a matrix with the same dimensions as data.

Alternatively, in a chart that uses C as the action language, value can resolve to a scalar value.
The chart uses scalar expansion to compare data to a matrix whose elements are all equal to the
value specified by value. See “Assign Values to All Elements of a Matrix”.

• If data is a structure, then value must resolve to a structure whose field specification matches
data exactly.

Tips
• If multiple input events occur in the same time step, the hasChangedFrom operator can detect

changes in data value between input events.
• If the chart writes to the data object but does not change the data value, the hasChangedFrom

operator returns false.
• The type of Stateflow chart determines the scope of the data supported by the change detection

operators:

• Standalone Stateflow charts in MATLAB: Local only
• In Simulink models, charts that use MATLAB as the action language: Input only
• In Simulink models, charts that use C as the action language: Input, Output, Local, or Data

Store Memory
• In a standalone chart in MATLAB, a change detection operator can detect changes in data
specified in a call to the step function because these changes occur before the start of the
current time step. For example, if x is equal to zero, the expression hasChangedFrom(x,0)
returns true when you execute the chart ch with the command:

 hasChangedFrom

3-57

step(ch,x=1);

In contrast, a change detection operator cannot detect changes in data caused by assignments in
state or transition actions in the same time step. Instead, the operator detects the change in value
at the start of the next time step.

• In a chart in a Simulink model, if you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, using an output as the argument of the hasChanged operator always returns
false. For more information, see “Initialize outputs every time chart wakes up”.

• When row-major array layout is enabled in charts that use hasChangedFrom, code generation
produces an error. Before generating code in charts that use hasChangedFrom, enable column-
major array layout. See “Select Array Layout for Matrices in Generated Code”.

Version History
Introduced in R2007a

See Also
hasChanged | hasChangedTo

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”
“Assign Values to All Elements of a Matrix”

3 Operators

3-58

hasChangedTo
Detect change in data to specified value

Syntax
tf = hasChangedTo(data,value)

Description
tf = hasChangedTo(data,value) returns 1 (true) if the value of data is not equal to value at
the beginning of the previous time step and is equal to value at the beginning of the current time
step. Otherwise, the operator returns 0 (false).

Examples

Detect Change in Matrix

Transition out of state if any element of M has changed value since the last time step or input event
and the current value of the matrix M is equal to matrixValue.

[hasChangedTo(M,matrixValue)]

Detect Change in Matrix Element

Transition out of state if the element in row 1 and column 3 of the matrix M has changed to the value
7 since the last time step or input event.

In charts that use MATLAB as the action language, use:

[hasChangedTo(M(1,3),7)]

 hasChangedTo

3-59

In charts that use C as the action language, use:

[hasChangedTo(M[0][2],7)]

Detect Change in Structure

Transition out of state if any field of the structure struct has changed value since the last time step
or input event and the current value of struct is equal to structValue.

[hasChangedTo(struct,structValue)]

Detect Change in Structure Field

Transition out of state if the field struct.field has changed to the value 5 since the last time step
or input event.

[hasChangedTo(struct.field,5)]

Input Arguments
data — Data
scalar | matrix | structure | ...

Stateflow data, specified as a:

3 Operators

3-60

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to an
integer. See “Operations for Vectors and Matrices in Stateflow”.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation. See “Index and Assign Values to
Stateflow Structures”.

The argument data cannot be a nontrivial expression or a custom code variable.

Standalone charts in MATLAB do not support change detection on an element of a matrix or a field in
a structure.

value — Value of data at current time step
scalar | matrix | structure

Value of the data at the current time step, specified as the same data type of data. value must be an
expression that resolves to a value that is comparable with data:

• If data is a scalar, then value must resolve to a scalar.
• If data is a matrix, then value must resolve to a matrix with the same dimensions as data.

Alternatively, in a chart that uses C as the action language, value can resolve to a scalar value.
The chart uses scalar expansion to compare data to a matrix whose elements are all equal to the
value specified by value. See “Assign Values to All Elements of a Matrix”.

• If data is a structure, then value must resolve to a structure whose field specification matches
data exactly.

Tips
• If multiple input events occur in the same time step, the hasChangedTo operator can detect

changes in data value between input events.
• If the chart writes to the data object but does not change the data value, the hasChangedTo

operator returns false.
• The type of Stateflow chart determines the scope of the data supported by the change detection

operators:

• Standalone Stateflow charts in MATLAB: Local only
• In Simulink models, charts that use MATLAB as the action language: Input only
• In Simulink models, charts that use C as the action language: Input, Output, Local, or Data

Store Memory
• In a standalone chart in MATLAB, a change detection operator can detect changes in data
specified in a call to the step function because these changes occur before the start of the
current time step. For example, if x is equal to zero, the expression hasChangedTo(x,1) returns
true when you execute the chart ch with the command:

 hasChangedTo

3-61

step(ch,x=1);

In contrast, a change detection operator cannot detect changes in data caused by assignments in
state or transition actions in the same time step. Instead, the operator detects the change in value
at the start of the next time step.

• In a chart in a Simulink model, if you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, using an output as the argument of the hasChanged operator always returns
false. For more information, see “Initialize outputs every time chart wakes up”.

• When row-major array layout is enabled in charts that use hasChangedTo, code generation
produces an error. Before generating code in charts that use hasChangedTo, enable column-
major array layout. See “Select Array Layout for Matrices in Generated Code”.

Version History
Introduced in R2007a

See Also
hasChanged | hasChangedFrom

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”
“Assign Values to All Elements of a Matrix”

3 Operators

3-62

in
Check state activity

Syntax
in(state_name)

Description
in(state_name) returns 1 (true) if the state state_name is active. Otherwise, the operator
returns 0 (false).

Examples

Synchronize Substate Activity Between Parallel States

Check the substate activity in state Fan to keep the substates of state Heater synchronized.

When Fan.On becomes active, transition from Heater.Off to Heater.On.

[in(Fan.On)]

When Fan.Off becomes active, transition from Heater.On to Heater.Off.

[in(Fan.Off)]

A change of active substate in Fan causes a corresponding change of active substate in Heater.

Find Number of Active Subcomponents

Set the value of airflow to the number of fans that are turned on.

airflow = in(FAN1.On) + in(FAN2.On);

 in

3-63

Tips
To determine the state activity, a Stateflow chart performs a localized search of the state hierarchy.
The chart does not perform an exhaustive search for all states and does not stop after finding the first
match. To improve the chances of finding a unique search result:

• Use dot notation to qualify the name of the state.
• Give states unique names.
• Use states and boxes as enclosures to limit the scope of the path resolution search.

Additionally, a chart cannot use the in condition to trigger actions based on the activity of states in
other charts.

For more information, see “Resolution of State Activity”.

Version History
Introduced before R2006a

See Also
enter | exit

Topics
“Check State Activity by Using the in Operator”

3 Operators

3-64

insertAfter
Insert string after substring

Syntax
newStr = insertAfter(str,subStr,new)
newStr = insertAfter(str,pos,new)

Description
newStr = insertAfter(str,subStr,new) inserts the string new into the string str after the
substring subStr. insertAfter inserts new after every occurrence of subStr.

newStr = insertAfter(str,pos,new) inserts new into str after the character position pos.

Note The insertAfter operator is not supported in Stateflow charts that use C as the action
language.

Examples

Insert Text After Substring

Insert text to form the string "Hello there, world!".

str = "Hello, world!";
newStr = insertAfter(str,"Hello"," there");

Insert Text After Character Position

Insert text to form the string "Hello there, world!".

str = "Hello, world!";
newStr = insertAfter(str,5," there");

 insertAfter

3-65

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

pos — Character position
positive integer

Character position, specified as a positive integer.

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
insertBefore | extractAfter

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-66

insertBefore
Insert string before substring

Syntax
newStr = insertBefore(str,subStr,new)
newStr = insertBefore(str,pos,new)

Description
newStr = insertBefore(str,subStr,new) inserts the string new into the string str before the
substring subStr. insertAfter inserts new before every occurrence of subStr.

newStr = insertBefore(str,pos,new) inserts new into str before the character position pos.

Note The insertBefore operator is not supported in Stateflow charts that use C as the action
language.

Examples

Insert Text Before Substring

Insert text to form the string "Hello there, world!".

str = "Hello, world!";
newStr = insertBefore(str,","," there");

Insert Text Before Position

Insert text to form the string "Hello there, world!".

str = "Hello, world!";
newStr = insertBefore(str,6," there");

 insertBefore

3-67

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

pos — Character position
positive integer

Character position, specified as a positive integer.

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
insertAfter | extractBefore

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-68

isletter
Determine which characters are letters

Syntax
tf = isletter(str)

Description
tf = isletter(str) returns a Boolean array based on whether each character of str is a letter or
not.

Note The isletter operator is not supported in Stateflow charts that use C as the action language.

Examples

Determine Which Characters of a String Are Letters

Create a Boolean vector of the form [1 1 1 1 1 0 0 1 1 1 1 1 0].

str = "Hello, world!";
X = isletter(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

 isletter

3-69

Version History
Introduced in R2021b

See Also
isspace | isstring

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-70

isspace
Determine which characters are spaces

Syntax
tf = isspace(str)

Description
tf = isspace(str) returns a Boolean array based on whether each character of str is a space or
not.

Note The isspace operator is not supported in Stateflow charts that use C as the action language.

Examples

Determine Which Characters of a String Are Spaces

Create a Boolean vector of the form [0 0 0 0 0 0 1 0 0 0 0 0 0].

str = "Hello, world!";
X = isspace(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

 isspace

3-71

Version History
Introduced in R2021b

See Also
isletter | isstring

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-72

isstring
Determine if input is string

Syntax
tf = isstring(X)

Description
tf = isstring(X) returns 1 (true) if X is a string. Otherwise, it returns 0 (false).

Note The isstring operator is not supported in Stateflow charts that use C as the action language.

Examples

Check Whether an Input Argument is a String Array

Return a value of 1 (true) because the input argument "Hello, world!" is a string.

str = "Hello, world";
x = isstring(str);

Return a value of 0 (false) because the input argument 9 is a not string.

u = 9;
y = isstring(u);

 isstring

3-73

Input Arguments
X — Input value
scalar | vector | matrix | multidimensional array

Input value, specified as a scalar, vector, matrix, or multidimensional array. X can be any data type. If
X is a string, it must be a string scalar.

Version History
Introduced in R2021b

See Also
isletter | isspace

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-74

isvalid
Determine if message is valid

Syntax
isvalid(message_name)

Description
isvalid(message_name) checks if an input or local message is valid. A message is valid if the
chart has removed it from the queue and has not forwarded or discarded it.

Examples

Check Message in State Action

When state A is active, receive message M. If the message has a data value equal to 3, discard the
message. Then, when state B is active, check that the message M is still valid. If the message is valid
and has a data value equal to 6, discard the message.

In state A:

during:
 if receive(M) == true
 if M.data == 3
 discard(M);
 end
 end

In state B:

during:
 if isvalid(M) == true
 if M.data == 6
 discard(M);
 end
 end

Version History
Introduced in R2015b

 isvalid

3-75

See Also
discard | forward | receive

Topics
“Control Message Activity in Stateflow Charts”

3 Operators

3-76

length
Determine length of message queue

Syntax
length(message_name)

Description
length(message_name) checks the number of messages in the internal receiving queue of an input
or local message.

Examples

Check Queue Length in State Action

Check the queue for message M. If a message is present, remove it from the queue. If exactly seven
messages remain in the queue, increment the value of x.

during:
 if receive(M) == true
 if length(M) == 7
 x = x+1;
 end
 end

Tips
• The length operator is not supported for input messages that use external receiving queues. To

use the length operator, enable the Use Internal Queue property for this message.

Version History
Introduced in R2015b

See Also
receive

 length

3-77

Topics
“Control Message Activity in Stateflow Charts”

3 Operators

3-78

lower
Convert string to lowercase

Syntax
newStr = lower(str)

Description
newStr = lower(str) converts the uppercase characters in the string str to the corresponding
lowercase characters.

Note The lower operator is not supported in Stateflow charts that use C as the action language.

Examples

Convert String to Lowercase

Convert the uppercase characters and return the string "hello, world!"

str = "Hello, world!";
newStr = lower(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

 lower

3-79

Version History
Introduced in R2021b

See Also
upper | reverse

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-80

matches
Determine if two strings match

Syntax
tf = matches(str1,str2)
tf = matches(str1,str2,IgnoreCase=true)

Description
tf = matches(str1,str2) compares the strings str1 and str2. The operator returns 1 (true) if
the strings are identical, and returns 0 (false) otherwise.

tf = matches(str1,str2,IgnoreCase=true) compares strings str1 and str2, ignoring any
differences in letter case.

Note The matches operator is not supported in Stateflow charts that use C as the action language.
For similar functionality, use strcmp.

Examples

Compare Strings

Return a value of 0 (false) because the strings do not match.

str1 = "Hello, world!";
str2 = "hello, World!";
x = matches(str1,str2);

Compare Strings While Ignoring Case

Return a value of 1 (true) because the strings match when you ignore case.

str1 = "Hello, world!";
str2 = "hello, World!";
x = matches(str1,str2,IgnoreCase=true);

 matches

3-81

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
strcmp | strcmpi | strncmp | strncmpi

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-82

plus, +
Concatenate strings

Syntax
newStr = str1 + str2
newStr = plus(str1,str2)

Description
newStr = str1 + str2 concatenates the strings str1 and str2.

newStr = plus(str1,str2) is an alternative way to execute newStr = str1 + str2.

Note To concatenate strings in Stateflow charts that use C as the action language, use strcat.

Examples

Concatenate Strings

Concatenate strings to form "Hello, world!".

str1 = "Hello, ";
str2 = "world!";
newStr = str1 + str2;

Alternatively, you can use plus to concatenate strings.

str1 = "Hello, ";
str2 = "world!";
newStr = plus(str1,str2);

 plus, +

3-83

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
extractAfter | extractBefore | strcat

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-84

receive
Extract message from queue

Syntax
receive(message_name)

Description
tf = receive(message_name) extracts an input or local message from its receiving queue. If a
valid message exists, receive returns true. If a valid message does not exist but there is a message
in the queue, the chart removes the message from the queue and receive returns true. If a valid
message does not exist and there are no messages in the queue, receive returns false.

Examples

Extract Message in State Action

Check the queue for message M and increment the value of x if both of these conditions are true:

• A message is present in the queue.
• The data value of the message is equal to 3.

If a message is not present or if the data value is not equal to 3, then the value of x does not change.
If a message is present, remove it from the queue regardless of the data value.

during:
 if receive(M) && M.data == 3
 x = x+1;
 end

Version History
Introduced in R2015b

See Also
send

 receive

3-85

Topics
“Control Message Activity in Stateflow Charts”

3 Operators

3-86

replace
Find and replace substrings

Syntax
newStr = replace(str,old,new)

Description
newStr = replace(str,old,new) replaces instances of the substring old that occur in the string
str with the string new.

Note The replace operator is not supported in Stateflow charts that use C as the action language.

Examples

Replace Substring

Replace a substring to form the string "Hello, Mars!".

str = "Hello, world!";
newStr = replace(str,"world","Mars");

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

old — Substring to replace
string scalar

Substring to replace, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

 replace

3-87

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Algorithms
The replace operator replaces sequential substrings. For example, replace("abc 2 def 22 ghi
222 jkl 2222","22","*") returns "abc 2 def * ghi *2 jkl **". To replace overlapping
substrings, use strrep. For more information, see “Replace Repeated Pattern”.

Version History
Introduced in R2021b

See Also
replaceBetween | strrep

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-88

replaceBetween
Replace substrings between start and end points

Syntax
newStr = replaceBetween(str,startStr,endStr,new)
newStr = replaceBetween(str,startPos,endPos,new)
newStr = replaceBetween(___ ,Boundaries=bounds)

Description
newStr = replaceBetween(str,startStr,endStr,new) replaces the substring in str
between the substrings startStr and endStr with the string new. replaceBetween does not
replace startStr and endStr themselves. new can have a different number of characters than the
substring it replaces.

newStr = replaceBetween(str,startPos,endPos,new) replaces the substring in str
between the character positions startPos and endPos, including the characters at those positions.

newStr = replaceBetween(___ ,Boundaries=bounds) includes or excludes the boundaries
specified in the previous syntaxes from the substring that the operator replaces. Specify bounds as
"inclusive" or "exclusive".

Note The replaceBetween operator is not supported in Stateflow charts that use C as the action
language.

Examples

Replace Text Between Substrings

Replace a substring to form the string "Hello, Mars!". By default, replaceBetween does not
replace the boundary substrings.

str = "Hello, world!";
newStr = replaceBetween(str,"Hello, ","!","Mars");

Alternatively, use the option Boundaries="inclusive" to replace the boundary substrings.

str = "Hello, world!";
newStr = replaceBetween(str,"w","d","Mars",Boundaries="inclusive");

 replaceBetween

3-89

Replace Text Between Start and End Positions

Replace a substring to form the string "Hello, Mars!". By default, replaceBetween replaces the
boundary characters.

str = "Hello, world!";
newStr = replaceBetween(str,8,12,"Mars");

Alternatively, use the Boundaries="exclusive" option to prevent replacement of the boundary
characters.

str = "Hello, world!";
newStr = replaceBetween(str,7,13,"Mars",Boundaries="exclusive");

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

startStr — Starting substring
string scalar

Staring substring, specified as a string scalar. Enclose literal strings with double quotes.

3 Operators

3-90

Example: "Hello"

endStr — Ending substring
string scalar

Ending substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

startPos — Starting character position
positive integer

Starting character position, specified as a positive integer.

endPos — Ending character position
positive integer

Ending character position, specified as a positive integer.

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

bounds — Boundary type
"inclusive" | "exclusive"

Boundary type, specified as "inclusive" or "exclusive". When you set bounds to "exclusive",
replaceBetween replaces only the text between the boundaries. When you set bounds to
"inclusive", replaceBetween also replaces the boundaries themselves.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
replace | strrep | eraseBetween

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 replaceBetween

3-91

reverse
Reverse order of characters in strings

Syntax
newStr = reverse(str)

Description
newStr = reverse(str) reverses the order of the characters in the string str.

Note The reverse operator is not supported in Stateflow charts that use C as the action language.

Examples

Reverse String

Reverse the order of characters and return the string "!dlrow ,olleH"

str = "Hello, world!";
newStr = reverse(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

3 Operators

3-92

Version History
Introduced in R2021b

See Also
lower | upper

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 reverse

3-93

rising
Detect rising edge in data since last time step

Syntax
tf = rising(expression)

Description
tf = rising(expression) returns 1 (true) if:

• The previous value of expression was negative and its current value is zero or positive.
• The previous value of expression was zero and its current value is positive.

Otherwise, the operator returns 0 (false). If expression changes value from negative to zero to
positive at three consecutive time steps, the operator detects a single edge when the value of
expression becomes zero.

The argument expression:

• Must be a scalar-valued expression
• Can combine chart input data, constants, nontunable parameters, continuous-time local data, and

state data from Simulink based states
• Can include addition, subtraction, and multiplication of scalar variables, elements of a matrix,
fields in a structure, or any valid combination of structure fields and matrix elements

Index elements of a matrix by using numbers or expressions that evaluate to a constant integer.

Note Edge detection is supported only in Stateflow charts in Simulink models.

Examples

Detect Rising Edge

Transition out of state if the value of the input data signal rises above a threshold of 2.5.

[rising(signal-2.5)]

3 Operators

3-94

The rising edge is detected when the value of the expression signal-2.5 becomes zero or positive.

Tips
• The operator rising imitates the behavior of a Trigger block with Trigger Type set to rising.
• Edge detection for continuous-time local data and state data from Simulink based states is

supported only in transition conditions.
• In atomic subcharts, map all input data that you use in edge detection expressions to input data or

nontunable parameters in the main chart. Mapping these input data to output data, local data, or
tunable parameters can result in undefined behavior.

Version History
Introduced in R2021b

See Also
crossing | falling | Trigger

Topics
“Detect Changes in Data and Expression Values”
“Operations for Vectors and Matrices in Stateflow”
“Index and Assign Values to Stateflow Structures”

 rising

3-95

send
Broadcast message or event

Syntax
send(message_name)
send(event_name)
send(local_event_name,state_name)
send(state_name.local_event_name)

Description
send(message_name) sends a local or output message.

send(event_name) sends a local or output event.

send(local_event_name,state_name) broadcasts a local event to state_name and any
offspring of that state in the hierarchy.

send(state_name.local_event_name) broadcasts a local event to its parent state state_name
and any offspring of that state in the hierarchy.

Examples

Broadcast Message

Send a local or output message M with a data value of 3.

M.data = 3;
send(M);

Broadcast Output Event

Send an output event E.

send(E);

3 Operators

3-96

Broadcast Directed Local Event

Send a local event E_one to state B and any of its substates.

send(E_one,B);

Broadcast by Using Qualified Event Name

Send a local event E_one to its parent state B and any of its substates.

send(B.E_one);

 send

3-97

Tips
• If a chart sends a message that exceeds the capacity of the receiving queue, a queue overflow

occurs. The result of the queue overflow depends on the type of receiving queue.

• When an overflow occurs in an internal queue, the Stateflow chart drops the new message. You
can control the level of diagnostic action by setting the Queue Overflow Diagnostic property
for the message. See “Queue Overflow Diagnostic”.

• When an overflow occurs in an external queue, the Queue block either drops the new message
or overwrites the oldest message in the queue, depending on the configuration of the block.
See “Overwrite the oldest element if queue is full” (Simulink). An overflow in an external queue
always results in a warning.

• Avoid using undirected local event broadcasts. Undirected local event broadcasts can cause
unwanted recursive behavior in your chart. Instead, send local events by using directed
broadcasts. For more information, see “Broadcast Local Events to Synchronize Parallel States”.

• Use the send operator to send events to the Schedule Editor. The Schedule Editor enables you to
schedule the execution of aperiodic partitions. For more information on using the send operator
with the Schedule Editor, see “Events in Schedule Editor” (Simulink).

Version History
Introduced before R2006a

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”
“Activate a Simulink Block by Sending Output Events”
“Broadcast Local Events to Synchronize Parallel States”

3 Operators

3-98

startsWith
Determine if string starts with substring

Syntax
tf = startsWith(str,substr)
tf = startsWith(str,substr,IgnoreCase=true)

Description
tf = startsWith(str,substr) returns 1 (true) if the string str starts with the substring
substr, and returns 0 (false) otherwise.

tf = startsWith(str,substr,IgnoreCase=true)checks if str starts with substr, ignoring
any differences in letter case.

Note The startsWith operator is not supported in Stateflow charts that use C as the action
language.

Examples

Determine If String Starts with Substring

Return a value of 0 (false) because the string "Hello, world!" does not start with the substring
"hello".

str = "Hello, world!";
substr = "hello";
x = startsWith(str,substr);

Determine If String Starts with Substring While Ignoring Case

Return a value of 1 (true) because the string "Hello, world!" starts with the substring "hello"
when you ignore case.

str = "Hello, world!";
substr = "hello";
x = startsWith(str,substr,IgnoreCase=true);

 startsWith

3-99

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
contains | endsWith | strfind

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-100

str2ascii
Convert string to array of type uint8

Syntax
A = str2ascii(str,n)

Description
A = str2ascii(str,n) returns array of type uint8 containing ASCII values for the first n
characters in str, where n is a positive integer. If str has fewer than n characters, the remaining
elements of A are set to 0.

Use of variables or expressions for n is not supported.

Note The operator str2ascii is supported only in Stateflow charts that use C as the action
language.

Examples

String to ASCII Values

Return uint8 array {72,101,108,108,111}.

str = "Hello, world!";
A = str2ascii(str,5);

Tips
• Enclose literal strings with single or double quotes.

Version History
Introduced in R2018b

See Also
ascii2str

 str2ascii

3-101

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-102

str2double, double
Convert string to double-precision value

Syntax
X = str2double(str)
X = double(str)

Description
X = str2double(str) converts the text in string str to a double-precision value.

• In a chart that uses MATLAB as the action language, str2double returns a complex value.
• In a chart that uses C as the action language, str2double returns a real value.

If str2double cannot convert the text to a number, it returns a NaN value.

X = double(str) is an alternative way to execute str2double(str) in charts that use MATLAB
as the action language.

Note Stateflow charts that use C as the action language support calling double only with numeric
arguments.

Examples

Convert String That Contains Decimal Notation

Convert the string "-12.345" to a double-precision numeric value.

str = "-12.345";
X = str2double(str);

Alternatively, in charts that use MATLAB as the action language, you can use the operator double:

str = "-12.345";
X = double(str);

 str2double, double

3-103

Convert String That Contains Exponential Notation

Return a value of 123400.

str = "1.234e5";
X = str2double(str);

Alternatively, in charts that use MATLAB as the action language, you can use the operator double:

str = "1.234e5";
X = str2double(str);

Input Arguments
str — Input value
string scalar

Input value, specified as a string scalar.

str must contain text that represents a number, including:

• Digits
• A decimal point
• A leading + or - sign
• An e preceding a power of 10 scale factor

3 Operators

3-104

• An imaginary part followed by an i or a j (not supported in charts that use C as the action
language)

In charts that use MATLAB as the action language, enclose literal strings with double quotes.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2018b

See Also
string | tostring

Topics
“Manage Textual Information by Using Strings”

 str2double, double

3-105

strcat
Concatenate strings

Syntax
newStr = strcat(str1,...,strN)

Description
newStr = strcat(str1,...,strN) concatenates strings str1,...,strN.

Note The operator strcat is supported only in Stateflow charts that use C as the action language.
In charts that use MATLAB as the action language, use plus.

Examples

Concatenate Strings

Concatenate strings to form "Hello, world!".

str1 = "Hello, ";
str2 = "world!";
newStr = strcat(str1,str2);

Tips
Enclose literal strings with single or double quotes.

Version History
Introduced in R2018b

See Also
substr | plus

3 Operators

3-106

Topics
“Manage Textual Information by Using Strings”

 strcat

3-107

strcmp
Compare strings (case sensitive)

Syntax
tf = strcmp(str1,str2)
tf = strcmp(str1,str2,n)

Description
tf = strcmp(str1,str2) compares strings str1 and str2.

• In charts that use MATLAB as the action language, the operator returns 1 (true) if the strings are
identical and 0 (false) otherwise.

• In charts that use C as the action language, the operator returns 0 if the strings are identical.
Otherwise, it returns a nonzero integer that depends on the compiler that you use. This value can
differ in simulation and generated code.

tf = strcmp(str1,str2,n) compares the first n characters in str1 and str2.

Note This syntax is supported only in Stateflow charts that use C as the action language. In charts
that use MATLAB as the action language, use strncmp.

Examples

Compare Strings in Charts That Use MATLAB as the Action Language

Return a value of 1 (true) because the strings are equal.

x = strcmp("Hello","Hello");

Return a value of 0 (false) because the strings are not equal.

y = strcmp("Hello","Hello!");

3 Operators

3-108

You can compare strings by using relational operators. Use == to determine if two strings are equal.

[str1 == str2]

Use ~= to determine if two strings are not equal.

[str1 ~= str2]

Compare Strings in Charts That Use C as the Action Language

Return a value of 0 because the strings are equal.

x = strcmp("Hello","Hello");

Return a nonzero value because the strings are not equal.

y = strcmp("Hello","Hello!");

 strcmp

3-109

You can compare strings by using relational operators. Use == to determine if two strings are equal.

[str1 == str2]

Use != or ~= to determine if two strings are not equal.

[str1 != str2]

Compare First N Characters of Strings

Return a value of 0 because the strings start with the same five characters.

z = strcmp("Hello","Hello!",5);

3 Operators

3-110

This syntax is supported only in Stateflow charts that use C as the action language. In charts that use
MATLAB as the action language, use strncmp.

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. In charts that use MATLAB as the action language, enclose
literal strings with double quotes.
Example: "Hello"

n — Number of characters checked
positive integer

Number of characters checked, starting at the beginning of each string, specified as a positive
integer.

Version History
Introduced in R2018b

See Also
matches | strcmpi | strncmp | strncmpi

Topics
“Manage Textual Information by Using Strings”

 strcmp

3-111

strcmpi
Compare strings (case insensitive)

Syntax
tf = strcmpi(str1,str2)

Description
tf = strcmpi(str1,str2) compares strings str1 and str2, ignoring differences in letter case.
The operator returns 1 (true) if the strings are identical and 0 (false) otherwise.

Note The operator strcmpi is not supported in Stateflow charts that use C as the action language.

Examples

Compare Strings While Ignoring Case

Set x to 0 (false) because the strings do not match. Set y to 1 (true) because the strings match
when you ignore case.

str1 = "Hello, World!";
str2 = "hello, world!";
x = strcmp(str1,str2);
y = strcmpi(str1,str2);

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"

3 Operators

3-112

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
matches | strcmp | strncmp | strncmpi

Topics
“Manage Textual Information by Using Strings”

 strcmpi

3-113

strcpy
Assign string value

Syntax
str1 = str2
strcpy(str1,str2)

Description
str1 = str2 assigns string str1 to string str2.

strcpy(str1,str2) is an alternative way to execute str1 = str2.

Note The operator strcpy is supported only in Stateflow charts that use C as the action language.

Examples

Assign String Data

Assign string data to str1 and str2.

str1 = 'So Long';
str2 = "Farewell";

Alternatively, in charts that use C as the action language, you can use strcpy to assign string data.

strcpy(str3,'Auf Wiedersehen');
strcpy(str4,"Adieu");

3 Operators

3-114

Tips
• Source and destination arguments must refer to different symbols.
• Enclose literal strings with single or double quotes.

Version History
Introduced in R2018b

See Also
Topics
“Manage Textual Information by Using Strings”

 strcpy

3-115

strfind
Find substring within a string

Syntax
k = strfind(str,substr)

Description
k = strfind(str,substr) searches the string str for occurrences of the substring substr. The
operator returns a vector that contains the starting index of each occurrence of substr in str. The
search is case-sensitive.

Note The strfind operator is not supported in Stateflow charts that use C as the action language.

Examples

Find Start of Substring

Return a value of 8, the starting character position of the substring "world" in the string "Hello,
world!".

str = "Hello, world!";
substr = "world";
x = strfind(str,substr);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.

3 Operators

3-116

Example: "Hello"

Output Arguments
k — Starting character position of substring
vector of doubles

Starting character position of each occurrence of subStr in str, returned as a vector of doubles that
contains the starting index of each occurrence of substr in str. If strfind does not find subStr,
then k is an empty array.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
contains | startsWith | endsWith

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 strfind

3-117

string
Convert value to string

Syntax
str = string(X)

Description
str = string(X) converts the input X to a string.

Note The operator string is not supported in Stateflow charts that use C as the action language.
For similar functionality, use tostring.

Examples

Convert Integer Scalar to String

Convert integer scalar to string "1307".

str = string(1307);

Convert Boolean Value to String

Convert Boolean value to string "true".

str = string(true);

3 Operators

3-118

Input Arguments
X — Input value
integer scalar | Boolean scalar | character array

Input value, specified as a integer scalar, Boolean scalar, or character array. To create a character
array of spaces, use the operator blanks.
Example: str = string(1307)
Example: str = string(true)
Example: str = string(blanks(n))

Version History
Introduced in R2021b

See Also
str2double | blanks | tostring

Topics
“Manage Textual Information by Using Strings”

 string

3-119

strip
Remove leading and trailing characters from string

Syntax
newStr = strip(str)
newStr = strip(str,side)
newStr = strip(___ ,stripCharacter)

Description
newStr = strip(str) removes consecutive whitespace characters from the beginning and end of
the string str.

newStr = strip(str,side) removes consecutive white space characters from the side specified
by side.

newStr = strip(___ ,stripCharacter) strips the character specified by stripCharacter.
You can use any of the input arguments in the previous syntaxes.

Note The strip operator is not supported in Stateflow charts that use C as the action language.

Examples

Strip Leading and Trailing Spaces from String

Remove the leading and trailing spaces and return the string "Hello, world!" .

str = " Hello, world! ";
newStr = strip(str);

Strip Spaces from One Side of String

Remove the leading spaces and return the string "Hello, world!    ".

str = " Hello, world! ";
str1 = strip(h,"left");

3 Operators

3-120

Remove the trailing spaces and return the string "    Hello, world!".

str = " Hello, world! ";
str1 = strip(h,"right");

Strip Leading and Trailing Characters from String

Remove the leading and trailing hyphens and return the string "Hello, world!" .

str = "----Hello, world!----";
newStr = strip(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

side — Side of string to strip
"both" (default) | "left" | "right"

Side of string to strip, specified as "left", "right", or "both".

 strip

3-121

stripCharacter — Character to remove
" " (default) | string scalar

Character to remove, specified as a string scalar.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
strtrim

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

3 Operators

3-122

strlen
Determine length of string

Syntax
L = strlen(str)

Description
L = strlen(str) returns the number of characters in the string str.

Note The operator strlen is supported only in Stateflow charts that use C as the action language.
In charts that use MATLAB as the action language, use strlength.

Examples

Determine Length of String

Return a value of 13, the number of characters in the string.

str = "Hello, world!";
L = strlen(str);

Tips
• Enclose literal strings with single or double quotes.

Version History
Introduced in R2018b

See Also
strlength

Topics
“Manage Textual Information by Using Strings”

 strlen

3-123

strlength
Determine length of string

Syntax
L = strlength(str)

Description
L = strlength(str) returns the number of characters in the string str.

Note The operator strlength is not supported in Stateflow charts that use C as the action
language. For similar functionality, use strlen.

Examples

Determine Length of String

Return a value of 13, the number of characters in the string.

str = "Hello, world!";
L = strlength(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Version History
Introduced in R2021b

See Also
string | contains | strlen

3 Operators

3-124

Topics
“Manage Textual Information by Using Strings”

 strlength

3-125

strncmp
Compare first N characters of strings (case sensitive)

Syntax
tf = strncmp(str1,str2,n)

Description
tf = strncmp(str1,str2,n) compares the first n characters of str1 and str2. The operator
returns 1 (true) if the strings are identical and 0 (false) otherwise.

Note The operator strncmp is not supported in Stateflow charts that use C as the action language.
For similar functionality, use strcmp.

Examples

Compare First N Characters of Strings

Set x to 1 (true) because the first 13 characters in the strings match. Set y to 0 (false) because the
first 14 characters in the strings do not match.

str1 = "Hello, world!";
str2 = "Hello, world!!!!!!!!!!!!";
x = strncmp(str1,str2,13);
y = strncmp(str1,str2,14);

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"

n — Number of characters checked
positive integer

3 Operators

3-126

Number of characters checked, starting at the beginning of each string, specified as a positive
integer.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
matches | strcmp | strcmpi | strncmpi

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 strncmp

3-127

strncmpi
Compare first N characters of strings (case insensitive)

Syntax
tf = strncmpi(str1,str2,n)

Description
tf = strncmpi(str1,str2,n) compares the first n characters of str1 and str2, ignoring any
differences in letter case. The operator returns 1 (true) if the strings are identical and 0 (false)
otherwise.

Note The operator strncmpi is not supported in Stateflow charts that use C as the action language.

Examples

Compare First N Characters While Ignoring Case

Set x to 1 (true) because the first 13 characters in the strings match when you ignore case. Set y to
0 (false) because the first 14 characters in the strings do not match.

str1 = "Hello, world!";
str2 = "hello, World!!!!!!!!!!!!";
x = strncmpi(str1,str2,13);
y = strncmpi(str1,str2,14);

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"

n — Number of characters checked
positive integer

3 Operators

3-128

Number of characters checked, starting at the beginning of each string, specified as a positive
integer.

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Version History
Introduced in R2021b

See Also
matches | strcmp | strcmpi | strncmp

Topics
“Manage Textual Information by Using Strings”

 strncmpi

3-129

strrep
Find and replace substrings

Syntax
newStr = strrep(str,old,new)

Description
newStr = strrep(str,old,new) replaces instances of the substring old that occur in the string
str with the string new.

Note The strrep operator is not supported in Stateflow charts that use C as the action language.

Examples

Replace Substring

Replace a substring to form the string "Hello, Mars!".

str = "Hello, world!";
newStr = strrep(str,"world","Mars");

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

old — Substring to replace
string scalar

Substring to replace, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

3 Operators

3-130

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

Algorithms
The strrep operator replaces overlapping substrings. For example, strrep("abc 2 def 22 ghi
222 jkl 2222","22","*") returns "abc 2 def * ghi ** jkl ***". To replace only
sequential substrings, use replace. For more information, see “Replace Repeated Pattern”.

Version History
Introduced in R2021b

See Also
replace | replaceBetween

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 strrep

3-131

strtrim
Remove leading and trailing white space from string

Syntax
newStr = strtrim(str)

Description
newStr = strtrim(str) removes the leading and trailing whitespace characters from the string
str.

Note The strtrim operator is not supported in Stateflow charts that use C as the action language.

Examples

Remove Leading and Trailing Spaces from String

Remove the leading and trailing spaces and return the string "Hello, world!"

str = " Hello, world! ";
newStr = strtrim(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

3 Operators

3-132

Version History
Introduced in R2021b

See Also
strip

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 strtrim

3-133

substr
Extract substring from string

Syntax
newStr = substr(str,pos,length)

Description
newStr = substr(str,pos,length) returns the substring of str that starts at the character
position pos and is length characters long. Use zero-based indexing.

Note The operator substr is supported only in Stateflow charts that use C as the action language.
In charts that use MATLAB as the action language, use extractAfter or extractBefore.

Examples

Extract Substring

Extract substring "world" from a longer string.

str = "Hello, world!";
newStr = substr(str,7,5);

Tips
• Use zero-based indexing.
• Enclose literal strings with single or double quotes.

Version History
Introduced in R2018b

See Also
extractAfter | extractBefore

3 Operators

3-134

Topics
“Manage Textual Information by Using Strings”

 substr

3-135

temporalCount
Number of events, chart executions, or time since state became active

Syntax
temporalCount(E)
temporalCount(tick)
temporalCount(time_unit)

Description
temporalCount(E) returns the number of occurrences of the event E since the associated state
became active.

temporalCount(tick) returns the number of times that the chart has woken up since the
associated state became active.

The implicit event tick is not supported when a Stateflow chart in a Simulink model has input
events.

temporalCount(time_unit) returns the length of time that has elapsed since the associated state
became active. Specify time_unit as seconds (sec), milliseconds (msec), or microseconds (usec).

Note Standalone Stateflow charts in MATLAB support using temporalCount only as an absolute-
time temporal logic operator.

Examples

Perform Action on Event Broadcast

Access successive elements of the array M each time that the chart processes a broadcast of the event
E.

In charts in a Simulink model, enter:

on E:
 y = M(temporalCount(E));

3 Operators

3-136

Using temporalCount as an event-based temporal logic operator is not supported in standalone
charts in MATLAB.

Perform Action on Chart Execution

Store the value of the input data u in successive elements of the array M.

In charts in a Simulink model, enter:

en,du:
 M(temporalCount(tick)+1) = u;

Using temporalCount as an event-based temporal logic operator is not supported in standalone
charts in MATLAB.

Determine Time of State Activity

Store the number of milliseconds since the state became active.

en,du:
 y = temporalCount(msec);

Tips
• You can use quotation marks to enclose the keywords 'tick', 'sec', 'msec', and 'usec'. For

example, temporalCount('tick') is equivalent to temporalCount(tick).
• The Stateflow chart resets the counter used by the temporalCount operator each time the

associated state reactivates.
• The timing for absolute-time temporal logic operators depends on the type of Stateflow chart:

• Charts in a Simulink model define temporal logic in terms of simulation time.
• Standalone charts in MATLAB define temporal logic in terms of wall-clock time.

The difference in timing can affect the behavior of a chart. For example, suppose that this chart is
executing the entry action of state A.

 temporalCount

3-137

• In a Simulink model, the function call to f executes in a single time step and does not
contribute to the simulation time. After calling the function f, the chart assigns a value of zero
to y.

• In a standalone chart, the function call to f can take several seconds of wall-clock time to
complete. After calling the function f, the chart assigns the nonzero time that has elapsed
since state A became active to y.

Version History
Introduced in R2008a

See Also
count | duration | elapsed

Topics
“Control Chart Execution by Using Temporal Logic”
“Count Events by Using the temporalCount Operator”

3 Operators

3-138

this
Access chart data during simulation

Syntax
this

Description
this provides external MATLAB code, such as functions and apps, access to chart data during
simulation.

• For charts in Simulink models, external MATLAB code can access inputs, outputs, and local data.
• For standalone charts in MATLAB, external MATLAB code can access local data and call step,

input event functions, and graphical and MATLAB functions in the chart. For more information,
see “Execute a Standalone Chart”.

Note In charts in Simulink models, the keyword this is supported only as an argument to external
MATLAB code. Any other use of the keyword in the chart results in a compile-time error.

Examples

Connect Chart to MATLAB App

Create a bidirectional connection between a Stateflow chart and a MATLAB app created in App
Designer. Call the app as an extrinsic function using this as an argument to the constructor. In the
app, create a custom property to interface with the chart during simulation. In the chart, store the
value returned by the function call to the app as a local data object.

In a chart that uses MATLAB as the action language, enter:

coder.extrinsic(appConstructor);
app = appConstructor(this);

In a chart that uses C as the action language, enter:

app = ml.appConstructor(this);

 this

3-139

For additional examples that illustrate this workflow, see “Model a Power Window Controller” and
“Simulate a Media Player”.

Change Data Value While Debugging Standalone Chart

Modify the value of the local data x while debugging a standalone Stateflow chart in MATLAB.

At the debugging prompt, enter:

this.x = 7

For more information, see “Examine and Change Values of Chart Data”.

Note When debugging a chart in a Simulink model, you can access all Stateflow data directly at the
debugging prompt. For more information, see “View and Modify Data in the MATLAB Command
Window”.

Tips
• Do not use the keyword this to access chart data after simulation has stopped.
• Calling an external function named this from a chart disables the keyword this throughout the

chart. To use the keyword, rename the extrinsic function.

Version History
Introduced in R2020b

See Also
coder.extrinsic

Topics
“Model a Power Window Controller”
“Simulate a Media Player”
“Model a Fitness Tracker”
“Call Extrinsic MATLAB Functions in Stateflow Charts”
“Access MATLAB Functions and Workspace Data in C Charts”
“Debug a Standalone Stateflow Chart”

3 Operators

3-140

tostring
Convert value to string

Syntax
str = tostring(X)

Description
str = tostring(X) converts numeric, Boolean, or enumerated data X to a string.

Note The operator tostring is supported only in Stateflow charts that use C as the action
language. In charts that use MATLAB as the action language, use string.

Examples

Convert Numeric Value to String

Convert numeric value to string "1.2345".

str = tostring(1.2345);

Convert Boolean Value to String

Convert Boolean value to string "true".

str = tostring(true);

 tostring

3-141

Convert Enumerated Value to String

Convert enumerated value to string "RED".

str = tostring(RED);

Version History
Introduced in R2018b

See Also
str2double | string

Topics
“Manage Textual Information by Using Strings”

3 Operators

3-142

type
Type of Stateflow data object

Syntax
type(data_name)

Description
type(data_name) returns the type of a Stateflow data object. Use the type operator to derive the
type of a Stateflow data object from other data objects.

In charts that use C as the action language, you can also use the return value in place of an explicit
type in a cast operation to convert the value of an expression to the same type as another data
object.

Tip In charts that use MATLAB as the action language, convert the value of an expression to the
same type as another data object by calling the cast function with the keyword "like". For more
information, see “Cast Type Based on Other Data”.

Examples

Derive Data Type from Other Data Objects

Open the example sf_bus_demo.

openExample("stateflow/InterfaceSimulinkBusSignalsIntegrateCustomCCodeExample")

In the Property Inspector or Model Explorer, use the data type of the input structure inbus to define
the data type of the local structure counterbus_struct.

type(inbus)

 type

3-143

Because inbus derives its type from the Simulink.Bus object COUNTERBUS, counterbus_struct
also derives its data type from COUNTERBUS.

For more information about this example, see “Integrate Custom Structures in Stateflow Charts”.

Cast Type Based on Other Data

In a chart that uses C as the action language, cast the expression x+3 to the same type as data z and
assign its value to y.

y = cast(x+3,type(z));

Input Arguments
data_name — Data name
name of Stateflow data

Data name, specified as the name of a Stateflow data object.

Version History
Introduced before R2006a

3 Operators

3-144

See Also
cast

Topics
“Type Cast Operations”
“Specify Type of Stateflow Data”

 type

3-145

upper
Convert a string to uppercase

Syntax
newStr = upper(str)

Description
newStr = upper(str) converts the lowercase characters in the string str to the corresponding
uppercase characters.

Note The upper operator is not supported in Stateflow charts that use C as the action language.

Examples

Convert String to Uppercase

Convert the lowercase characters and return the string "HELLO, WORLD!"

str = "Hello, world!";
newStr = upper(str);

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

Limitations
• This operator does not support the use of Stateflow structure fields. For more information about

structures in Stateflow, see “Access Bus Signals Through Stateflow Structures”.

3 Operators

3-146

Version History
Introduced in R2021b

See Also
lower | reverse

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

 upper

3-147

Objects

4

Stateflow.op.BlockOperatingPoint
Operating point information for Stateflow chart

Description
A Stateflow.op.BlockOperatingPoint object contains a snapshot of a Stateflow chart during
simulation. The operating point includes information about:

• Active states
• Chart output data
• Chart, state, and function local data
• Persistent variables in MATLAB functions and truth tables

Creation
When you save the final operating point for a Simulink model, as described in “Save Operating
Points”, you create a Simulink.op.ModelOperatingPoint object that contains a
Stateflow.op.BlockOperatingPoint object for each Stateflow chart in the model.

Access the Stateflow.op.BlockOperatingPoint object for a chart by calling the get function
and using the block path to the chart. For example, if the final operating point for the model is
xFinal and the block path to your chart is "myModel/Chart", enter:

op = get(xFinal,"myModel/Chart");

Properties
The Stateflow.op.BlockOperatingPoint object contains a property for each state, box,
function, local data, and output data in the chart. The name of the property matches the name of the
state, function, box, or data. For example:

• If a chart has a state named state, the Stateflow.op.BlockOperatingPoint object for the
chart has a property named state that is a Stateflow.op.OperatingPointContainer object.

• If a chart has a chart output named output, the Stateflow.op.BlockOperatingPoint object
for the chart has a property named output that is a Stateflow.op.OperatingPointData
object.

Object Functions
highlightActiveStates Highlight active states
removeHighlighting Remove highlighting of active states
clone Copy operating point for Stateflow chart
open Display object in editing environment

Examples

4 Objects

4-2

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"
 + RO_act "Function"
 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

 Stateflow.op.BlockOperatingPoint

4-3

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

4 Objects

4-4

isActive(op.Actuators.LO.Isolated)

ans =

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Modify Operating Point Information for Output Data

1 Open the model old_sf_car.

openExample("stateflow/AutomaticTransmissionLegacyExample")
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 10.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the shift_logic chart.

blockpath = "old_sf_car/shift_logic";
op = get(xSteadyState,blockpath)

op =

Block: "shift_logic" (handle) (active)
 Path: old_sf_car/shift_logic

 Contains:

 + gear_state "State (AND)" (active)
 + selection_state "State (AND)" (active)
 gear "Block output data" double [1, 1]

6 Highlight the states that are active in the chart at t = 10.

highlightActiveStates(op)

 Stateflow.op.BlockOperatingPoint

4-5

7 Access the Stateflow.op.OperatingPointData object that contains the operating point
information for the chart output gear.

op.gear

ans =

 Description: 'Block output data'
 DataType: 'double'
 Size: '[1, 1]'
 Range: [1x1 struct]
 InitialValue: [1x0 double]
 Value: 4

8 Change the value of gear to 1.

op.gear.Value = 1;
9 Inspect the modified operating point information for the chart output gear.

op.gear

ans =

 Description: 'Block output data'
 DataType: 'double'
 Size: '[1, 1]'
 Range: [1x1 struct]
 InitialValue: [1x0 double]
 Value: 1

Version History
Introduced in R2009b

R2019a: Renamed from Stateflow.SimState.BlockSimState
Behavior changed in R2019a

Stateflow.SimState.BlockSimState is now called Stateflow.op.BlockOperationPoint.
The behavior remains the same.

4 Objects

4-6

See Also
Objects
Stateflow.op.OperatingPointContainer | Stateflow.op.OperatingPointData |
Simulink.op.ModelOperatingPoint

Functions
get

Topics
“Save and Restore Operating Points for Stateflow Charts”
“Use Operating Points to Specify Initial State of Simulation”
“Test Difficult-to-Reproduce Chart Configurations”
“Test Chart with Fault Detection and Redundant Logic”

 Stateflow.op.BlockOperatingPoint

4-7

Stateflow.op.OperatingPointContainer
Operating point information for state, box, or function

Description
A Stateflow.op.OperatingPointContainer object contains a snapshot of a state, box, or
function in a Stateflow chart during simulation. The operating point includes information about:

• Active substates
• State and function local data
• Persistent variables in MATLAB functions and truth tables

Creation
When you save the final operating point for a Simulink model, as described in “Save Operating
Points”, you create a Stateflow.op.BlockOperatingPoint object for each Stateflow chart in the
model. This object contains a Stateflow.op.OperatingPointContainer object for each state,
box, or function in the chart.

Access a Stateflow.op.OperatingPointContainer object by using the property that matches
the name of the state, box, or function in the parent Stateflow.op.BlockOperatingPoint or
Stateflow.op.OperatingPointContainer. For example, suppose that op is the
Stateflow.op.BlockOperatingPoint object for a chart. To access the
Stateflow.op.OperatingPointContainer object for a top-level state called state, enter:

op.state

Similarly, to access the Stateflow.op.OperatingPointContainer object for a substate called
substate in the top-level state state, enter:

op.state.substate

Properties
The Stateflow.op.OperatingPointContainer object contains a property for each substate, box,
function, local data, and persistent variables in the state, box, or function. The name of the property
matches the name of the state, function, box, or data. For example:

• If a state has a substate named substate, the Stateflow.op.OperatingPointContainer
object for the state has a property named substate that is specified as a
Stateflow.op.OperatingPointContainer object.

• If a MATLAB function has a persistent variable named persistentVar, the
Stateflow.op.OperatingPointContainer object for the function has a property named
persistentVar that is specified as a Stateflow.op.OperatingPointData object.

4 Objects

4-8

Object Functions
setActive Set state as active
isActive Determine if state is active
getPrevActiveChild Get previously active substate
setPrevActiveChild Set previously active substate
open Display object in editing environment

Examples

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"
 + RO_act "Function"
 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

 Stateflow.op.OperatingPointContainer

4-9

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

4 Objects

4-10

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

isActive(op.Actuators.LO.Isolated)

ans =

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Version History
Introduced in R2009b

R2019a: Renamed from Stateflow.SimState.SimStateContainer
Behavior changed in R2019a

Stateflow.SimState.SimStateContainer is now called
Stateflow.op.OperationPointContainer. The behavior remains the same.

See Also
Objects
Stateflow.op.BlockOperatingPoint | Stateflow.op.OperatingPointData |
Simulink.op.ModelOperatingPoint

Topics
“Save and Restore Operating Points for Stateflow Charts”

 Stateflow.op.OperatingPointContainer

4-11

“Use Operating Points to Specify Initial State of Simulation”
“Test Difficult-to-Reproduce Chart Configurations”
“Test Chart with Fault Detection and Redundant Logic”

4 Objects

4-12

Stateflow.op.OperatingPointData
Operating point information for chart data

Description
A Stateflow.op.OperatingPointData object contains a snapshot of a data object in a Stateflow
chart during simulation.

Creation
When you save the final operating point for a Simulink model, as described in “Save Operating
Points”, you create a Stateflow.op.BlockOperatingPoint object for each Stateflow chart in the
model. This object contains a Stateflow.op.OperatingPointData object for each:

• Chart output data
• Chart, state, and function local data
• Persistent variable in a MATLAB function or truth table

Access a Stateflow.op.OperatingPointData object by using the property that matches the
name of the data in the parent Stateflow.op.BlockOperatingPoint or
Stateflow.op.OperatingPointContainer. For example, suppose that op is the
Stateflow.op.BlockOperatingPoint object for a chart. To access the
Stateflow.op.OperatingPointData object for a chart output called output, enter:

op.output

Similarly, to access the Stateflow.op.OperatingPointData object for a persistent variable called
persistentVar in the MATLAB function function, enter:

op.function.persistentVar

Properties
Description — Description of saved operating point
character vector

This property is read-only.

Description of the saved operating point, specified as a character vector.
Data Types: char

DataType — Type of data
character vector

This property is read-only.

Type of data, specified as a character vector. For more information, see “Type”.

 Stateflow.op.OperatingPointData

4-13

Data Types: char

Size — Size of data
character vector

This property is read-only.

Size of the data, specified as a character vector. For more information, see “Size”.
Data Types: char

Range — Range of acceptable values for data
structure

This property is read-only.

Range of acceptable values for the data, specified as a structure with fields Minimum and Maximum.
For more information, see “Limit range”.
Data Types: struct

InitialValue — Initial value of data
any data type

This property is read-only.

Initial value of data, specified as a value of the type determined by DataType. For more information,
see “Initial value”.

Value — Value of data
any data type

Value of data, specified as a value of the type determined by DataType.

Object Functions
open Display object in editing environment

Examples

Modify Operating Point Information for Output Data

1 Open the model old_sf_car.

openExample("stateflow/AutomaticTransmissionLegacyExample")
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 10.
4 Run the simulation.

4 Objects

4-14

5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point
information for the shift_logic chart.

blockpath = "old_sf_car/shift_logic";
op = get(xSteadyState,blockpath)

op =

Block: "shift_logic" (handle) (active)
 Path: old_sf_car/shift_logic

 Contains:

 + gear_state "State (AND)" (active)
 + selection_state "State (AND)" (active)
 gear "Block output data" double [1, 1]

6 Highlight the states that are active in the chart at t = 10.

highlightActiveStates(op)

7 Access the Stateflow.op.OperatingPointData object that contains the operating point
information for the chart output gear.

op.gear

ans =

 Description: 'Block output data'
 DataType: 'double'
 Size: '[1, 1]'
 Range: [1x1 struct]
 InitialValue: [1x0 double]
 Value: 4

8 Change the value of gear to 1.

op.gear.Value = 1;
9 Inspect the modified operating point information for the chart output gear.

op.gear

ans =

 Description: 'Block output data'

 Stateflow.op.OperatingPointData

4-15

 DataType: 'double'
 Size: '[1, 1]'
 Range: [1x1 struct]
 InitialValue: [1x0 double]
 Value: 1

Version History
Introduced in R2009b

R2019a: Renamed from Stateflow.SimState.SimStateData
Behavior changed in R2019a

Stateflow.SimState.SimStateData is now called Stateflow.op.OperationPointData. The
behavior remains the same.

See Also
Objects
Stateflow.op.BlockOperatingPoint | Stateflow.op.OperatingPointContainer |
Simulink.op.ModelOperatingPoint

Topics
“Save and Restore Operating Points for Stateflow Charts”
“Use Operating Points to Specify Initial State of Simulation”
“Test Difficult-to-Reproduce Chart Configurations”
“Test Chart with Fault Detection and Redundant Logic”

4 Objects

4-16

Stateflow.SimulationData.Data
Data values during simulation

Description
Use Stateflow.SimulationData.Data to log the values of local and output data during
simulation.

Creation
1 In the Symbols pane, select a local or output data object.
2 In the Property Inspector, under Logging, select the Log signal data check box.

Properties
Name — Logging name of data object
character array

Logging name of the data object, specified as a character array. By default, the logging name for a
data object is the name of the data object. To assign another name to the data object, in the Property
Inspector, under Logging Name, select Custom and enter a custom logging name.
Data Types: char

BlockPath — Block path for source block
Simulink.SimulationData.BlockPath

Block path for the source block, specified as a Simulink.SimulationData.BlockPath object.
Data Types: Simulink.SimulationData.BlockPath

Values — Logged data and time
timeseries

Logged data and time, specified as a timeseries object.
Data Types: timeseries

Object Functions
plot Plot simulation results in Simulation Data Inspector

Examples

Access Logged Data

1 Open the sf_semantics_hotel_checkin model.

openExample("stateflow/SemanticsHotelCheckinExample")

 Stateflow.SimulationData.Data

4-17

For more information about this example, see “How Stateflow Objects Interact During
Execution”.

2 Open the Hotel chart.
3 Open the Symbols pane. In the Simulation tab, in Prepare, click Symbols Pane.
4 Open the Property Inspector. In the Simulation tab, in Prepare, click Property Inspector.
5 Configure the service local data for logging.

• In the Symbols pane, select service.
• In the Property Inspector, on the Logging tab, select the Log signal data check box.

6 Return to the Simulink model.
7 Simulate the model. After starting the simulation, check into the hotel by toggling the first switch

twice and order room service by toggling the second switch multiple times. During simulation,
Stateflow saves logged data in a Simulink.SimulationData.Dataset signal logging object.
The default name of the signal logging object is logsout. For more information, see “Save
Signal Data Using Signal Logging” (Simulink).

8 Stop the simulation.
9 To access the signal logging object, at the MATLAB command prompt, enter:

logsout

logsout =

Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ___________ ________________________________
 1 [1x1 Data] service sf_semantics_hotel_checkin/Hotel

10 To access logged element, use the get method.

serviceLog = logsout.get("service")

serviceLog =

 Stateflow.SimulationData.Data
 Package: Stateflow.SimulationData

 Properties:
 Name: 'service'
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 Values: [1×1 timeseries]

11 To access the logged data and time of each logged element, use the Values.Data and
Values.Time properties. For example, arrange logged data in tabular form by using the table
function.

T = table(serviceLog.Values.Time,serviceLog.Values.Data);
T.Properties.VariableNames = ["Time" "Data"]

T =

 6×2 table

 Time Data
 __________ ____

 0 0
 1.7076e+06 0
 1.8607e+06 1

4 Objects

4-18

 1.9653e+06 2
 1.9653e+06 3
 1.9653e+06 4
 2.2912e+06 5

In this example, the data points with values of 0 correspond to when the chart initializes the local
data service to 0 at time 0 and when a default transition sets service to 0 at time 1.7076e
+06.

Tips
• Stateflow.SimulationData.Data objects record a data point every time that the Stateflow

chart writes to the data you are logging, even if the data does not change value. For example, in
“Access Logged Data” on page 4-17, the data points with values of 0 correspond to when the chart
initializes the local data service to 0 at time 0 and when a default transition sets service to 0
at time 1.7076e+06.

Version History
Introduced in R2017b

See Also
Stateflow.SimulationData.State | Simulink.SimulationData.BlockPath | timeseries |
plot

Topics
“Log Simulation Output for States and Data”
“Save Signal Data Using Signal Logging” (Simulink)

 Stateflow.SimulationData.Data

4-19

Stateflow.SimulationData.State
State activity during simulation

Description
Use Stateflow.SimulationData.State to log the activity of a state during simulation.

Creation
1 In the Stateflow Editor, select a state.
2 In the Simulation tab, in Prepare, select Log Self Activity. Alternatively, in the Property

Inspector,under Logging, select the Log self activity check box.

Properties
Name — Logging name of state
character array

Logging name of the state, specified as a character array. By default, the logging name for a state is
the hierarchical name using a period (.) to separate each level in the hierarchy of states. To assign a
shorter name to the state, in the Property Inspector, set Logging Name to Custom and enter a
custom logging name.
Data Types: char

BlockPath — Block path for source block
Simulink.SimulationData.BlockPath

Block path for the source block, specified as a Simulink.SimulationData.BlockPath object.
Data Types: Simulink.SimulationData.BlockPath

Values — State activity
timeseries

State activity, specified as a timeseries object. Data values represent whether the state is active (1)
or not active (0). Time values correspond to simulation time.
Data Types: timeseries

Object Functions
plot Plot simulation results in Simulation Data Inspector

Examples

4 Objects

4-20

Access Logged State Activity

1 Open the sf_semantics_hotel_checkin model.

openExample("stateflow/SemanticsHotelCheckinExample")

For more information about this example, see “How Stateflow Objects Interact During
Execution”.

2 Open the Hotel chart.
3 Open the Symbols pane. In the Simulation tab, in Prepare, click Symbols Pane.
4 Configure the Dining_area state for logging.

• In the Stateflow Editor, select the Dining_area state.
• In the Simulation tab, under Prepare, select Log Self Activity.

In the Property Inspector, under Logging, select the Log self activity check box.
• By default, the logging name for this state is the hierarchical signal name

Check_in.Checked_in.Executive_suite.Dining_area. To assign a shorter name to the
state, set Logging Name to Custom and enter Dining Room.

5 Return to the Simulink model.
6 Simulate the model. After starting the simulation, check into the hotel by toggling the first switch

twice and order room service by toggling the second switch multiple times. During simulation,
Stateflow saves logged data in a Simulink.SimulationData.Dataset signal logging object.
The default name of the signal logging object is logsout. For more information, see “Save
Signal Data Using Signal Logging” (Simulink).

7 Stop the simulation.
8 To access the signal logging object, at the MATLAB command prompt, enter:

logsout

logsout =

Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ___________ ________________________________
 1 [1x1 State] Dining Room sf_semantics_hotel_checkin/Hotel

9 To access logged elements, use the get method.

diningLog = logsout.get("Dining Room")

diningLog =

 Stateflow.SimulationData.State
 Package: Stateflow.SimulationData

 Properties:
 Name: 'Dining Room'
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 Values: [1×1 timeseries]

10 To access the logged data and time of each logged element, use the Values.Data and
Values.Time properties. For example, arrange logged data in tabular form by using the table
function.

T = table(diningLog.Values.Time,diningLog.Values.Data);
T.Properties.VariableNames = ["Time" "Data"]

 Stateflow.SimulationData.State

4-21

T =

 6×2 table

 Time Data
 __________ ____

 0 0
 1.8607e+06 1
 1.9653e+06 0
 1.9653e+06 1
 1.9653e+06 0
 2.2912e+06 1

Version History
Introduced in R2017b

See Also
Stateflow.SimulationData.Data | Simulink.SimulationData.BlockPath | timeseries |
plot

Topics
“Log Simulation Output for States and Data”
“Save Signal Data Using Signal Logging” (Simulink)

4 Objects

4-22

Object Functions

5

clone
Package: Stateflow.op

Copy operating point for Stateflow chart

Syntax
newOp = clone(op)

Description
newOp = clone(op) creates a copy of the operating point op for a Stateflow chart.

Examples

Copy Operating Point

1 Open the sf_car model.

openExample("stateflow/AutomaticTransmissionWithActiveStateDataExample")

For more information about this model, see “Simulate Chart as a Simulink Block With Local
Events”.

2 Set the model to save the final operating point. Open the Configuration Parameters dialog box
and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use xFinal.
2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 10.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the shift_logic chart.

blockpath = "sf_car/shift_logic";
op = get(xFinal,blockpath);

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the gear_state state.

op.gear_state

ans =

State: "gear_state" (handle) (active)
 Path: sf_car/shift_logic/gear_state

 Contains:

 + first "State (OR)"
 + fourth "State (OR)"

5 Object Functions

5-2

 + second "State (OR)" (active)
 + third "State (OR)"

The operating point shows that the substate second is active.
7 Create a copy of the operating point.

newOp = clone(op);
8 Modify the new operating point by changing the active substate of gear_state.

setActive(newOp.gear_state.first)
9 Verify that the substate first is active in the modified operating point.

newOp.gear_state

ans =

State: "gear_state" (handle) (active)
 Path: sf_car/shift_logic/gear_state

 Contains:

 + first "State (OR)" (active)
 + fourth "State (OR)"
 + second "State (OR)"
 + third "State (OR)"

10 Verify that the substate second is active in the original operating point.

op.gear_state

ans =

State: "gear_state" (handle) (active)
 Path: sf_car/shift_logic/gear_state

 Contains:

 + first "State (OR)"
 + fourth "State (OR)"
 + second "State (OR)" (active)
 + third "State (OR)"

Input Arguments
op — Operating point for chart
Stateflow.op.BlockOperatingPoint object

Operating point for a Stateflow chart, specified as a Stateflow.op.BlockOperatingPoint object.

Output Arguments
newOp — Copy of operating point
Stateflow.op.BlockOperatingPoint object

Copy of operating point, returned as a Stateflow.op.BlockOperatingPoint object.

 clone

5-3

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.BlockOperatingPoint

Topics
“Save and Restore Operating Points for Stateflow Charts”

5 Object Functions

5-4

getPrevActiveChild
Package: Stateflow.op

Get previously active substate

Syntax
substateOp = getPrevActiveChild(stateOp)

Description
substateOp = getPrevActiveChild(stateOp) returns the operating point for the previously
active substate in the operating point stateOp. stateOp must be an operating point for a state that
contains a history junction.

Examples

Modify Previously Active Child

1 Open the sf_boiler model.

openExample("stateflow/BangBangControlUsingTemporalLogicExample")

For more information about this model, see “Model Bang-Bang Temperature Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use xFinal.
2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 100.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Bang-Bang Controller chart.

blockpath = "sf_boiler/Bang-Bang Controller";
op = get(xFinal,blockpath);

6 Verify that the state On in the box Heater is not active.

isActive(op.Heater.On)

ans =

 logical

 0
7 Find the previously active substate of state On.

getPrevActiveChild(op.Heater.On)

 getPrevActiveChild

5-5

ans =

State: "HIGH" (handle)
 Path: sf_boiler/Bang-Bang Controller/Heater/On/HIGH

 Contains:

 []
8 Modify the previously active substate of state On. Specify the substate as a

Stateflow.op.OperatingPointContainer object.

setPrevActiveChild(op.Heater.On,op.Heater.On.NORM)

Alternatively, specify the name of the substate by using a string scalar or a character vector.

setPrevActiveChild(op.Heater.On,"NORM")
9 Verify that the substate NORM is the previously active substate in the modified operating point.

getPrevActiveChild(op.Heater.On)

ans =

State: "NORM" (handle)
 Path: sf_boiler/Bang-Bang Controller/Heater/On/NORM

 Contains:

 []

Input Arguments
stateOp — Operating point for state
Stateflow.op.OperatingPointContainer object

Operating point for a state that contains a history junction, specified as a
Stateflow.op.OperatingPointContainer object.

Output Arguments
substateOp — Operating point for substate
Stateflow.op.OperatingPointContainer object

Operating point for the previously active substate, returned as a
Stateflow.op.OperatingPointContainer object.

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.OperatingPointContainer

5 Object Functions

5-6

Functions
setPrevActiveChild | isActive

Topics
“Save and Restore Operating Points for Stateflow Charts”

 getPrevActiveChild

5-7

highlightActiveStates
Package: Stateflow.op

Highlight active states

Syntax
highlightActiveStates(op)

Description
highlightActiveStates(op) highlights the active states in the Stateflow Editor for the operating
point op.

Examples

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"

5 Object Functions

5-8

 + RO_act "Function"
 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

 highlightActiveStates

5-9

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

isActive(op.Actuators.LO.Isolated)

ans =

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Input Arguments
op — Operating point for chart
Stateflow.op.BlockOperatingPoint object

Operating point for a Stateflow chart, specified as a Stateflow.op.BlockOperatingPoint object.

Tips
• To clear the highlighting, use the removeHighlighting object function. Alternatively, in the

Debug tab, under Animation, click the Remove animation highlighting button .

Version History
Introduced in R2009b

5 Object Functions

5-10

See Also
Objects
Stateflow.op.BlockOperatingPoint

Functions
removeHighlighting | setActive | isActive

Topics
“Save and Restore Operating Points for Stateflow Charts”

 highlightActiveStates

5-11

isActive
Package: Stateflow.op

Determine if state is active

Syntax
tf = isActive(stateOp)

Description
tf = isActive(stateOp) returns logical 1 (true) if stateOp is the operating point for a state
that is active. Otherwise, the function returns logical 0 (false).

Examples

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"

5 Object Functions

5-12

 + RO_act "Function"
 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

 isActive

5-13

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

isActive(op.Actuators.LO.Isolated)

ans =

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Input Arguments
stateOp — Operating point for state
Stateflow.op.OperatingPointContainer object

Operating point for a state, specified as a Stateflow.op.OperatingPointContainer object.

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.OperatingPointContainer

Functions
setActive | highlightActiveStates | removeHighlighting

5 Object Functions

5-14

Topics
“Save and Restore Operating Points for Stateflow Charts”
“Test Chart with Fault Detection and Redundant Logic”

 isActive

5-15

open
Package: Stateflow.op

Display object in editing environment

Syntax
open(op)

Description
open(op) displays the object that corresponds to the operating point op in its editing environment.
For example, charts, states, and boxes appear in the Stateflow Editor. Data appear in the Model
Explorer. For more information, see view.

Examples

Display State in Chart

Suppose that xFinal is the operating point for a Stateflow chart that contains a top-level state
state with a substate called substate.

Zoom in on and select the substate in the Stateflow Editor.

open(op.state.substate)

Input Arguments
op — Operating point
Stateflow.op.BlockOperatingPoint object | Stateflow.op.OperatingPointContainer
object | Stateflow.op.OperatingPointData object

Operating point, specified as a Stateflow.op.BlockOperatingPoint,
Stateflow.op.OperatingPointContainer, or Stateflow.op.OperatingPointData object.

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.BlockOperatingPoint | Stateflow.op.OperatingPointContainer |
Stateflow.op.OperatingPointData

Functions
view

5 Object Functions

5-16

Topics
“Save and Restore Operating Points for Stateflow Charts”

 open

5-17

removeHighlighting
Package: Stateflow.op

Remove highlighting of active states

Syntax
removeHighlighting(op)

Description
removeHighlighting(op) removes the highlighting of active states in the Stateflow Editor.

Examples

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"
 + RO_act "Function"

5 Object Functions

5-18

 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

 removeHighlighting

5-19

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

isActive(op.Actuators.LO.Isolated)

ans =

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Input Arguments
op — Operating point for chart
Stateflow.op.BlockOperatingPoint object

Operating point for a Stateflow chart, specified as a Stateflow.op.BlockOperatingPoint object.

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.BlockOperatingPoint

Functions
highlightActiveStates | setActive | isActive

5 Object Functions

5-20

Topics
“Save and Restore Operating Points for Stateflow Charts”

 removeHighlighting

5-21

setActive
Package: Stateflow.op

Set state as active

Syntax
setActive(stateOp)

Description
setActive(stateOp) sets the state that corresponds to the operating point stateOp as active.
stateOp must be an operating point for a leaf state. When you call setActive, the chart maintains
state consistency by:

• Exiting and entering the appropriate states
• Resetting temporal counters for newly active states
• Updating values of active state data
• Enabling or disabling function-call subsystems and Simulink functions that bind to states

However, the chart does not perform exit actions for the previously active states or entry actions
for the newly active state. Additionally, the state does not reinitialize any state-parented local data.

Examples

Modify Operating Point Information for State Activity

1 Open the sf_aircraft model.

openExample("stateflow/FaultDetectionControlLogicInAnAircraftControlSystemExample")

For more information about this model, see “Detect Faults in Aircraft Elevator Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use
xSteadyState.

2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 3.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Mode Logic chart.

blockpath = "sf_aircraft/Mode Logic";
op = get(xSteadyState,blockpath)

op =

5 Object Functions

5-22

 Block: "Mode Logic" (handle) (active)
 Path: sf_aircraft/Mode Logic

 Contains:

 + Actuators "State (OR)" (active)
 + LI_act "Function"
 + LO_act "Function"
 + L_switch "Function"
 + RI_act "Function"
 + RO_act "Function"
 + R_switch "Function"
 LI_mode "State output data" sf_aircraft_ModeType [1,1]
 LO_mode "State output data" sf_aircraft_ModeType [1,1]
 RI_mode "State output data" sf_aircraft_ModeType [1,1]
 RO_mode "State output data" sf_aircraft_ModeType [1,1]

6 Access the Stateflow.op.OperatingPointContainer object that contains the operating
point information for the Actuators state.

op.Actuators

ans =

 State: "Actuators" (handle) (active)
 Path: sf_aircraft/Mode Logic/Actuators

 Contains:

 + LI "State (AND)" (active)
 + LO "State (AND)" (active)
 + RI "State (AND)" (active)
 + RO "State (AND)" (active)

7 Highlight the states that are active in the chart at t = 3.

highlightActiveStates(op)

 setActive

5-23

8 Change the substate activity in the state LO to reflect a failure of the left-outer actuator.

setActive(op.Actuators.LO.Isolated)

9 Verify that the substate Isolated in the state LO is active in the modified operating point.

isActive(op.Actuators.LO.Isolated)

ans =

5 Object Functions

5-24

 logical

 1
10 Remove the highlighting of active states in the Stateflow Editor.

removeHighlighting(op)

Input Arguments
stateOp — Operating point for state
Stateflow.op.OperatingPointContainer object

Operating point for a leaf state, specified as a Stateflow.op.OperatingPointContainer object.

Version History
Introduced in R2009b

See Also
Objects
Stateflow.op.OperatingPointContainer

Functions
isActive | highlightActiveStates | removeHighlighting

Topics
“Save and Restore Operating Points for Stateflow Charts”
“Test Chart with Fault Detection and Redundant Logic”

 setActive

5-25

setPrevActiveChild
Package: Stateflow.op

Set previously active substate

Syntax
setPrevActiveChild(stateOp,substateOp)
setPrevActiveChild(stateOp,substateName)

Description
setPrevActiveChild(stateOp,substateOp) sets the state that corresponds to the operating
point substateOp as the previously active substate in the operating point stateOp. stateOp must
be an operating point for an inactive state that contains a history junction.

setPrevActiveChild(stateOp,substateName) marks the state called substateName as the
previously active substate in stateOp.

Examples

Modify Previously Active Child

1 Open the sf_boiler model.

openExample("stateflow/BangBangControlUsingTemporalLogicExample")

For more information about this model, see “Model Bang-Bang Temperature Control System”.
2 Set the model to save the final operating point. Open the Configuration Parameters dialog box

and, in the Data Import/Export pane:

1 Select Final states and enter a name for the operating point. For this example, use xFinal.
2 Select Save final operating point.
3 Click OK.

3 Set the stop time for this simulation segment. In the Simulation tab, set Stop Time to 100.
4 Run the simulation.
5 Access the Stateflow.op.BlockOperatingPoint object that contains the operating point

information for the Bang-Bang Controller chart.

blockpath = "sf_boiler/Bang-Bang Controller";
op = get(xFinal,blockpath);

6 Verify that the state On in the box Heater is not active.

isActive(op.Heater.On)

ans =

 logical

 0

5 Object Functions

5-26

7 Find the previously active substate of state On.

getPrevActiveChild(op.Heater.On)

ans =

State: "HIGH" (handle)
 Path: sf_boiler/Bang-Bang Controller/Heater/On/HIGH

 Contains:

 []
8 Modify the previously active substate of state On. Specify the substate as a

Stateflow.op.OperatingPointContainer object.

setPrevActiveChild(op.Heater.On,op.Heater.On.NORM)

Alternatively, specify the name of the substate by using a string scalar or a character vector.

setPrevActiveChild(op.Heater.On,"NORM")
9 Verify that the substate NORM is the previously active substate in the modified operating point.

getPrevActiveChild(op.Heater.On)

ans =

State: "NORM" (handle)
 Path: sf_boiler/Bang-Bang Controller/Heater/On/NORM

 Contains:

 []

Input Arguments
stateOp — Operating point for state
Stateflow.op.OperatingPointContainer object

Operating point for an inactive state that contains a history junction, specified as a
Stateflow.op.OperatingPointContainer object.

substateOp — Operating point for substate
Stateflow.op.OperatingPointContainer object

Operating point for the new previously active substate, specified as a
Stateflow.op.OperatingPointContainer object.

substateName — Name of substate
string scalar | character vector

Name of the new previously active substate, specified as a string scalar or a character vector.

Version History
Introduced in R2009b

 setPrevActiveChild

5-27

See Also
Objects
Stateflow.op.OperatingPointContainer

Functions
getPrevActiveChild | isActive

Topics
“Save and Restore Operating Points for Stateflow Charts”

5 Object Functions

5-28

Tools

6

Search & Replace
Find and replace text in Stateflow charts

Description
Use the Search & Replace tool to find and modify text in your Stateflow charts. Search an individual
chart or all of the charts in a Simulink model. Modify the scope of your search by enabling case-
sensitive searching, matching only whole words, using regular expressions to define search patterns,
or filtering by object and field types. Enable case-preserving replacements for lowercase, uppercase,
title case, or sentence case text.

Open the Search & Replace
• Open a Stateflow chart. Then, in the Modeling tab, select Find > Find & Replace in Chart.

Examples

Search for Text
1 In the Search for field, enter the text for which to search.
2 Modify the scope of your search results.

• To enable case-sensitive searching, select Match case.
• To specify the chart or model in which to search, use the Search in drop-down list.
• To match only whole words or to define a search pattern by using a regular expression, use

the drop-down list to the right of Search in on page 6-0 .
• To filter your search targets by object and field type, select one or more check boxes under

Object types or Field types.
3 Click Search. The Search & Replace tool displays the matching text in the center pane of the

tool. If the matching text belongs to a graphical object such as a state or transition, the graphical
object appears highlighted in the bottom pane of the tool.

6 Tools

6-2

4 To highlight to the object in the Stateflow Editor, double-click the bottom pane.
5 To find the next match, click Search again.

Replace Text

1 Search for the text to replace, as described in “Search for Text” on page 6-2.
2 In the Replace with field, enter the text with which to replace the text found by your search.
3 To enable case-preserving replacements, select Preserve case.
4 Click one of these buttons:

• Search — Skip the current search result and search for the next match.
• Replace — Replace the current search result with the replacement text and search for the

next match.
• Replace all — Replace all instances that match the search text. Replacement spans from the

current search result to the end of the current Stateflow chart. The Search & Replace tool
ignores any matches that you previously skipped by clicking the Search button.

• Replace all in this object — Replace all instances that match the search text in the current
Stateflow object. The Search & Replace tool replaces any matches that you previously skipped
by clicking the Search button.

Parameters
Match case — Case-sensitive searching
off (default) | on

 Search & Replace

6-3

Select this parameter to enable case-sensitive searching.

• When you select this parameter, the Search & Replace tool finds only text that exactly matches the
text in the Search for field.

• When you clear this parameter, the Search & Replace tool matches the character sequence in the
Search for field, regardless of case. For example, the search text "gear" matches the text
"gear", "Gear", or "GEAR".

Preserve case — Case-preserving replacement
off (default) | on

Select this parameter to enable case-preserving replacements. When you select this parameter, the
Search & Replace tool replaces the matching text based on these conditions:

• If the matching text has only lowercase characters, the Search & Replace tool replaces the
matching text entirely with the lowercase equivalent of all replacement characters. For example, if
the replacement text is "AnDreW", the matching text "james" is replaced by "andrew".

• If the matching text has only uppercase characters, the Search & Replace tool replaces the
matching text entirely with the uppercase equivalent of all replacement characters. For example,
if the replacement text is "AnDreW", the matching text "JAMES" is replaced by "ANDREW".

• If the matching text uses title case, with uppercase characters in the first character position of
each word, the Search & Replace tool replaces the matching text with the replacement text in title
case. For example, if the replacement text is "AnDreW jAcksOn", the matching text "James
Monroe" is replaced by "Andrew Jackson".

• If the matching text uses sentence case, with an uppercase character in the first character
position of a sentence and all other sentence characters in lowercase, the Search & Replace tool
replaces the matching text with the replacement text in sentence case. For example, if the
replacement text is "AnDreW is TALL", the matching text "James is tall" is replaced by
"Andrew is tall".

If the matching text does not follow any of these patterns, the Search & Replace tool replaces the
matching text using the exact case specified by the replacement text.

Search in — Location to search
chart name (default) | model name

Specify the location to search. You can select an individual chart or all of the charts in a loaded
Simulink model. By default, the Search & Replace tool searches only the chart in which you opened
the tool.

Note The left drop-down list shows the charts in only one model at a time. To select a Stateflow chart
in a different model, first select the model. Then open the drop-down list a second time and select the
chart.

Style — Style of text for which to search
Contains word (default) | Match whole word | Regular expression

Use the drop-down list to the right of the Search in parameter to specify one of these options:

• Contains word — Search for text in any expression. For example, the search text "gear"
matches the text "gear_state".

6 Tools

6-4

• Match whole word — Search for whole word expressions delimited by a blank space or a
character that is not alphanumeric or an underscore character. For example, the search text
"gear" does not match the text "gear_state".

• Regular expression — Treat the search text as a regular expression. For example,the search
text "g\w*_" matches any text that begins with the letter g and ends with an underscore. For
more information, see “Regular Expressions”.

Object types — Type of objects in which to search
Machine | Charts | StatesJunctions | Transitions | Data | Events | Messages

Specify the type of objects in which to search. You can limit your search to the Stateflow machine,
charts, states, junctions, transitions, data, events, and messages. For more information, see
“Overview of Stateflow Objects”.

Field types — Type of fields in which to search
Names | Labels | Descriptions | Document links

Specify the type of fields in which to search. You can limit your search to names, labels, descriptions,
and document links.

Note The Search & Replace tool looks for matching text anywhere in a state label regardless of
whether you limit your search to names or labels.

Tips
• The Search & Replace tool does not search the names of Simulink models and Stateflow charts. To

change the names of models and charts, use the Simulink model window.

Version History
Introduced before R2006a

See Also
Topics
“Stateflow Editor Operations”
“Overview of Stateflow Objects”
“Regular Expressions”

 Search & Replace

6-5

Sequence Viewer
Visualize messages, events, states, transitions, and functions

Description
The Sequence Viewer visualizes message flow, function calls, and state transitions.

Use the Sequence Viewer to see the interchange of messages, events, function calls in Simulink
models, Simulink behavior models in System Composer™ and between Stateflow charts in Simulink
models.

In the Sequence Viewer window, you can view event data related to Stateflow chart execution and the
exchange of messages between Stateflow charts. The Sequence Viewer window shows messages as
they are created, sent, forwarded, received, and destroyed at different times during model execution.
The Sequence Viewer window also displays state activity, transitions, and function calls to Stateflow
graphical functions, Simulink functions, and MATLAB functions. For more information, see “Use the
Sequence Viewer to Visualize Messages, Events, and Entities”.

Note The Sequence Viewer does not display function calls generated by MATLAB Function blocks
and S-functions.

Open the Sequence Viewer
• Simulink Toolstrip: On the Simulation tab, in the Review Results section, click Sequence

Viewer.

6 Tools

6-6

Examples

Using the Sequence Viewer Tool

1 To activate logging events, in the Simulink Toolstrip, under the Simulation tab, in the Prepare
section, click Log Events.

2 Simulate your model.
3 To open the tool, in the Simulink Toolstrip, under the Simulation tab, in the Review Results

section, click Sequence Viewer.

• “Use the Sequence Viewer to Visualize Messages, Events, and Entities”
• “Simulink Messages Overview” (Simulink)

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision. Minimum and maximum precision are 1 and 16, respectively.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: SequenceViewerTimePrecision
Type: character vector
Values: '3' | scalar
Default: '3'

History — Maximum number of previous events to display
1000 (default) | scalar

Total number of events before the last event to display. Minimum and maximum number of events are
0 and 25000, respectively.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.

Programmatic Use
Block Parameter: SequenceViewerHistory
Type: character vector

 Sequence Viewer

6-7

Values: '1000' | scalar
Default: '1000'

Version History
Introduced in R2020b

See Also
Blocks
Sequence Viewer

Topics
“Use the Sequence Viewer to Visualize Messages, Events, and Entities”
“Simulink Messages Overview” (Simulink)

6 Tools

6-8

Simulation Data Inspector
Inspect and compare data and simulation results to validate and iterate model designs

Description
The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages
of your workflow. This example workflow shows how the Simulation Data Inspector supports all
stages of the design cycle:

1 “View Data in the Simulation Data Inspector” (Simulink)

Run a simulation in a model configured to log data to the Simulation Data Inspector, or import
data from the workspace or a MAT-file. You can view and verify model input data or inspect
logged simulation data while iteratively modifying your model diagram, parameter values, or
model configuration.

2 “Inspect Simulation Data” (Simulink)

Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to
understand and evaluate the data. “Create Plots Using the Simulation Data Inspector” (Simulink)
to tell your story.

3 “Compare Simulation Data” (Simulink)

Compare individual signals or simulation runs and analyze your comparison results with relative,
absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate
iterative design and allow you to highlight signals that do not meet your tolerance requirements.
For more information about the comparison operation, see “How the Simulation Data Inspector
Compares Data” (Simulink).

4 “Save and Share Simulation Data Inspector Data and Views” (Simulink)

Share your findings with others by saving Simulation Data Inspector data and views.

You can also harness the capabilities of the Simulation Data Inspector from the command line. For
more information, see “Inspect and Compare Data Programmatically” (Simulink).

 Simulation Data Inspector

6-9

Open the Simulation Data Inspector
• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
• Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
• MATLAB command prompt: Enter Simulink.sdi.view.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

6 Tools

6-10

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)

Programmatic Use
Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

Version History
Introduced in R2010b

See Also
Functions
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.snapshot

Topics
“View Data in the Simulation Data Inspector” (Simulink)
“Inspect Simulation Data” (Simulink)
“Compare Simulation Data” (Simulink)
“Iterate Model Design Using the Simulation Data Inspector” (Simulink)

 Simulation Data Inspector

6-11

	Blocks
	Chart
	Sequence Viewer
	State Transition Table
	Truth Table

	Functions
	sfclipboard
	sfclose
	sfdebugger
	sfexplr
	sfgco
	sfhelp
	sflib
	sfnew
	sfopen
	sfpref
	sfprint
	sfroot
	sfsave
	Simulink.sdi.compareRuns
	stateflow
	Stateflow.exportAsClass
	Stateflow.exportToVersion
	Stateflow.findMatchingPort

	Operators
	after
	ascii2str
	at
	before
	blanks
	boolean
	change
	contains
	count
	crossing
	discard
	duration
	elapsed
	endsWith
	enter
	erase
	eraseBetween
	every
	exit
	extractAfter
	extractBefore
	falling
	forward
	hasChanged
	hasChangedFrom
	hasChangedTo
	in
	insertAfter
	insertBefore
	isletter
	isspace
	isstring
	isvalid
	length
	lower
	matches
	plus
	receive
	replace
	replaceBetween
	reverse
	rising
	send
	startsWith
	str2ascii
	str2double
	strcat
	strcmp
	strcmpi
	strcpy
	strfind
	string
	strip
	strlen
	strlength
	strncmp
	strncmpi
	strrep
	strtrim
	substr
	temporalCount
	this
	tostring
	type
	upper

	Objects
	Stateflow.op.BlockOperatingPoint
	Stateflow.op.OperatingPointContainer
	Stateflow.op.OperatingPointData
	Stateflow.SimulationData.Data
	Stateflow.SimulationData.State

	Object Functions
	clone
	getPrevActiveChild
	highlightActiveStates
	isActive
	open
	removeHighlighting
	setActive
	setPrevActiveChild

	Tools
	Search & Replace
	Sequence Viewer
	Simulation Data Inspector

